IAP Tube Axial Fans

IAP Tube Axial fans, both direct drive and belt driven, are designed for reliable air movement in commercial and industrial applications, most often as part of a ducted ventilation system. Direct drive Tube Axial fans (Model TADI) are best suited for applications moving relatively clean, dry and cool air. The belt driven Model TABI is the best selection where the motor must be mounted out of the airstream due to high temperatures or contaminated air.

Both models feature heavy duty, cast aluminum propellers with high performance, tapered airfoil blades designed to meet varied capacity and pressure requirements.

Rugged Tube Axial fan construction includes continuously welded steel housings and rigid support members for structural strength. Housings include integral formed inlet and outlet flanges prepunched for ease of installation in flanged ductwork.

Models TADI and TABI can be suspended in ductwork at any angle. They can also be hung horizontally with optional brackets and isolators or base mounted horizontally with optional mounting feet. Where vertical mounting is desired, Tube Axial fans may be base mounted or suspended, with airflow in either direction. See pages 4 and 5 for details.

All fan sizes have been thoroughly tested in a modern AMCA Registered research and development facility to insure complete and accurate performance ratings. Models TADI and TABI are licensed to bear the AMCA Certified Ratings Seal for air performance.

MODELTADI — DIRECT DRIVE
Direct drive models are available in seven sizes ranging from 18 to 48 inches. Capacities extend from 3800 CFM to 48,408 CFM with static pressures to 7/8 of an inch. Motors are available with open drip proof, totally enclosed, or explosion proof enclosures. Airstream temperatures are limited to the maximum motor temperature rating. Performance capabilities are obtained through combinations selected from a broad range of number of blades (3, 4 or 6), propeller pitches, and motor RPM (680, 860, 1140 or 1725).

MODELTABI — BELT DRIVE
Belt driven models are available in nine sizes, ranging from 18 to 60 inches. Capacities range from 1900 CFM to 76,700 CFM, with static pressures to 1-1/2 inches. Motors are available with open drip proof, totally enclosed, or explosion proof enclosures. Motors are mounted out of the airstream, allowing belt driven fans to handle air at temperatures up to 200°F. and to exhaust moisture laden and contaminated air.

IAP Inc. certifies that the TADI and TABI models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Standard 211 and comply with the requirements of the AMCA Certified Ratings Program.
Construction Features

Housings
Housings are constructed of heavy gauge, continuously welded steel to assure no air leakage. They are rigidly supported to prevent vibration and pulsation.

Inlet & Outlet Flanges
Flanged inlets and outlets with mounting holes are provided for ductwork connection.

Adjustable Motor Bases
Rigid structural steel motor bases are welded to the fan housing and include heavy duty adjustment screws for belt tensioning.

Bearings
Standard heavy duty bearings are grease lubricated, self aligning, ball type in pillow block mounts. Bearings are selected for a minimum (L50) life in excess of 200,000 hours operation at maximum cataloged conditions.

Motors
Heavy duty ball bearing motors are carefully matched to the fan load.

Optional Direct Drive Motor Wiring

Motor Supports
Rigid structural steel motor supports are welded to the fan housing.

Finish
All structural steel components are coated with thermally fused polyester for a long lasting finish.

Drives
Drives are sized for a minimum of 150% of driven horsepower and include adjustable motor pulleys for final system balancing. Pulleys are machined cast iron.

Belt & Bearing Tubes
Bearings and drives are protected from the airstream by heavy gauge steel belt tubes and bolted bearing covers.

Shafts
Turned, precision ground and polished steel shafts are sized so that the first critical speed is at least 25% over the maximum operating speed. Close tolerances where the shaft makes contact with the bearing result in longer bearing life.

Model TADI and TABI propellers and hubs are designed to produce a high level of efficiency over a broad selection range. Tapered airfoil blades are cast as one piece in durable aluminum alloy. An integral retention rim is cast in each blade root. Hubs are two piece, cast aluminum with recesses to match blade retention rims. Blades are securely locked to the hub. Each propeller is statically and dynamically balanced.
Accessories

BELT GUARD
Sturdy, fabricated steel, three sided belt guards are available for protection from rotating pulleys and belts. Optional totally enclosed belt guards are also available.

SHAFT SEAL
A shaft seal with an aluminum rub ring is available on Model TABI to protect the bearings from contaminants. The shaft seal is not gas tight.

ACCESS DOOR
Access doors for inspecting or servicing fan components are available in two designs; bolted, or hinged with quick release latches.

MOUNTING FEET
Heavy gauge steel mounting feet are available for base mounting and are bolted to the fan inlet and outlet flanges.

ISOLATION
Neoprene or spring isolators are available for either base mount or hanging installations.

MOTOR COVER
Weatherproof motor covers are available and also serve as guards to protect personnel from rotating parts.

SPECIAL COATINGS
A wide selection of protective coatings is available for application to fans exposed to corrosive atmosphere.

EXTENDED LUBE LINE
External lubrication lines with grease fittings are available for ease of bearing lubrication.

INLET BELL
Spun steel inlet bells are recommended for installations with non-ducted inlets to minimize entrance losses.

HANGING BRACKETS
In applications where the fan is to be suspended horizontally from the ceiling, structural steel hanging brackets welded to the fan housing are available. Fans can be mounted with motors on top or bottom.

INLET AND OUTLET GUARD
Removable inlet and outlet guards constructed of 1/2" x 1" steel mesh are available to provide protection from rotating parts in non-ducted applications.
Accessory Dimensional Data

<table>
<thead>
<tr>
<th>Fan Size</th>
<th>F</th>
<th>G</th>
<th>H*</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1</td>
<td>22/8</td>
<td>21 1/8</td>
<td>4 1/2</td>
<td>15 1/4</td>
<td>16 1/4</td>
<td>1 1/2</td>
<td>18 1/4</td>
<td>24 1/2</td>
<td>18 1/8</td>
<td>1 1/2</td>
<td>12 1/4</td>
<td>21 3/8</td>
<td>12 1/4</td>
<td>21 1/8</td>
<td>13 1/4</td>
<td>11 1/4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>24 1/2</td>
<td>24 1/8</td>
<td>5</td>
<td>15 1/4</td>
<td>18 1/8</td>
<td>1 1/2</td>
<td>19 1/2</td>
<td>25 1/2</td>
<td>20 1/4</td>
<td>1 1/2</td>
<td>12 1/4</td>
<td>23 1/8</td>
<td>13 1/4</td>
<td>23 1/8</td>
<td>14 1/4</td>
<td>12 1/4</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>28 1/2</td>
<td>28 1/8</td>
<td>5</td>
<td>17 1/4</td>
<td>21 1/8</td>
<td>1 1/2</td>
<td>22 1/2</td>
<td>29 1/8</td>
<td>24 1/4</td>
<td>1 1/4</td>
<td>15 1/2</td>
<td>27 1/4</td>
<td>15 1/4</td>
<td>27 1/4</td>
<td>14 1/4</td>
<td>12 1/4</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>32 1/2</td>
<td>31 1/8</td>
<td>6</td>
<td>19 1/4</td>
<td>25 1/8</td>
<td>1 1/2</td>
<td>27 1/4</td>
<td>36 1/8</td>
<td>31 1/4</td>
<td>1 1/2</td>
<td>17 1/8</td>
<td>33 1/8</td>
<td>18 1/4</td>
<td>33 1/4</td>
<td>16 1/4</td>
<td>14 1/4</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>36 1/8</td>
<td>35 1/8</td>
<td>7</td>
<td>22 1/2</td>
<td>29 1/8</td>
<td>1 1/2</td>
<td>31 1/2</td>
<td>42 1/2</td>
<td>37 1/4</td>
<td>1 1/2</td>
<td>19 1/8</td>
<td>39 1/8</td>
<td>21 1/4</td>
<td>39 1/8</td>
<td>16 1/4</td>
<td>14 1/4</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>39 1/8</td>
<td>39 1/8</td>
<td>8</td>
<td>25 1/8</td>
<td>35 1/8</td>
<td>2</td>
<td>37 1/8</td>
<td>48 1/8</td>
<td>43 1/8</td>
<td>1 1/2</td>
<td>23 1/4</td>
<td>45 1/4</td>
<td>24 1/4</td>
<td>45 1/4</td>
<td>22 1/4</td>
<td>20 1/4</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>43 1/8</td>
<td>43 1/8</td>
<td>8</td>
<td>27 1/4</td>
<td>39 1/8</td>
<td>2</td>
<td>41 1/4</td>
<td>55 1/8</td>
<td>49 1/8</td>
<td>2</td>
<td>25 1/4</td>
<td>56 1/4</td>
<td>28 1/4</td>
<td>52 1/4</td>
<td>22 1/4</td>
<td>20 1/4</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>47 1/8</td>
<td>46 1/8</td>
<td>9</td>
<td>31 1/8</td>
<td>44 1/8</td>
<td>2</td>
<td>46 1/8</td>
<td>62 1/8</td>
<td>55 1/8</td>
<td>2</td>
<td>29 1/4</td>
<td>58 1/4</td>
<td>31 1/4</td>
<td>59 1/4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>55 1/8</td>
<td>54 1/8</td>
<td>5</td>
<td>35 1/2</td>
<td>48 1/2</td>
<td>2</td>
<td>50 1/2</td>
<td>65 1/2</td>
<td>61 1/2</td>
<td>2</td>
<td>33 1/4</td>
<td>64 1/4</td>
<td>34 1/4</td>
<td>65 1/4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*H may vary with motor size

VERTICAL BASE & HANGING MOUNTS

Heavy duty steel brackets are available for either vertical base mounting or vertical hanging installations. The discharge direction must be specified with either mounting arrangement.

COMPANION FLANGE

Inlet and outlet companion flanges are available for ease of duct connection.

OPTIONAL DISCHARGES

- **UBFM**
- **UBCH**
- **DBFM**
- **DBCH**

Dimensions for FAN SIZE

<table>
<thead>
<tr>
<th>Dim.</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
<th>54</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>24 1/2</td>
<td>26 1/8</td>
<td>30 1/2</td>
<td>37</td>
<td>43</td>
<td>49 1/8</td>
<td>56 1/8</td>
<td>62 1/8</td>
<td>68 1/8</td>
</tr>
<tr>
<td>Z</td>
<td>26 1/2</td>
<td>28 1/8</td>
<td>32 1/2</td>
<td>38 1/8</td>
<td>44 1/4</td>
<td>50 1/2</td>
<td>57 1/8</td>
<td>64 1/8</td>
<td>70 1/8</td>
</tr>
</tbody>
</table>
ENGINEERING DATA

This catalog contains comprehensive air performance data for IAP's tube axial fans, both direct drive and belt driven. Air performance is shown in fan tables. All performance data was obtained in tests using fans equipped with inlet and outlet ducts.

This engineering data section will assist the system designer in applying IAP tube axial fans in air conditioning, heating and ventilating systems.

SELECTION

The first consideration in any fan selection is the amount of air to be moved and the resistance to this air movement. Air volume requirements are established by specific codes, heating and cooling loads and accepted industry standards. Once the air volume is known, system resistance can be determined by summing up the losses through the system components. Duct layout, duct size, coils, filters, dampers and fan accessories all affect the system resistance. "ASHRAE Guide and Data Books" and manufacturer's data on individual system components are common sources of information available to the system designer.

The determination of airflow and system resistance defines the point of operation that the fan must be capable of providing. In most applications, several fans may meet the required airflow and system resistance conditions. Larger fans tend to turn slower and generate less noise. These fans generally have lower operating costs. However, this may be offset by higher initial costs when compared to a smaller fan. Smaller fans will have higher losses for a given application and a steeper performance curve. The steeper performance curve minimizes airflow changes in the system as system resistance varies.

Models TADI and TABI Tube Axial fan ratings are based upon a motor's thermal characteristics. In most standard applications, this allows for a motor to be successfully operated above its horsepower rating. This does not reduce motor life or performance and therefore is economically desirable. This catalog shows fan performance ratings with BHP's as much as 10-15% over the motor's nameplate horsepower. Lesser overloads are recommended for applications using totally enclosed or explosion proof motors.

SPEED CHANGES

IAP Model TABI belt driven tube axial fans have adjustable motor pulleys. The speed of the fan is factory set for the specified RPM, but can be varied for final system balancing. For the direct drive Model TADI, performance must be specified as closely as possible to actual needs, since fan speed is not field adjustable.

A change in the speed of a fan in a fixed system will cause the volume, pressure, and horsepower to vary as follows:

\[
\text{CFM}_2 = \left(\frac{\text{RPM}_2}{\text{RPM}_1} \right) \times \text{CFM}_1
\]

\[
\text{SP}_2 = \left(\frac{\text{RPM}_2}{\text{RPM}_1} \right)^2 \times \text{SP}_1
\]

\[
\text{BHP}_2 = \left(\frac{\text{RPM}_2}{\text{RPM}_1} \right)^3 \times \text{BHP}_1
\]

NOTE: Subscript 1 indicates existing conditions. Subscript 2 indicates new conditions after speed change.

When changing the speed of a fan the actual running motor amperage should be checked against the motor's nameplate rating to prevent overloading. The fan speed should also be checked to make sure the RPM does not exceed the maximum RPM limits shown on the performance pages.

EFFECT OF AIR DENSITY

Ratings in the fan performance tables and curves of this catalog are based on standard air (clean, dry air with a density of 0.075 lbs./Ft. at 70° F. and a barometric pressure of 29.92 in. mercury).

A change in elevation, temperature or the type of gas will affect density.

With a fan at a constant speed and installed in a fixed system, a change in density will cause the fan pressure and horsepower to vary. The air volume delivered by the fan will remain constant.

The table below gives air density correction factors for calculating the effect of elevation and temperature on fan performance.

<table>
<thead>
<tr>
<th>ELEVATION (Feet Above Sea Level)</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>0.96</td>
<td>0.90</td>
<td>0.84</td>
<td>0.78</td>
<td>0.72</td>
<td>0.66</td>
<td>0.60</td>
<td>0.54</td>
<td>0.48</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>100</td>
<td>0.91</td>
<td>0.81</td>
<td>0.72</td>
<td>0.64</td>
<td>0.56</td>
<td>0.48</td>
<td>0.40</td>
<td>0.32</td>
<td>0.24</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>150</td>
<td>0.87</td>
<td>0.75</td>
<td>0.64</td>
<td>0.54</td>
<td>0.44</td>
<td>0.34</td>
<td>0.26</td>
<td>0.18</td>
<td>0.10</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.84</td>
<td>0.71</td>
<td>0.59</td>
<td>0.48</td>
<td>0.37</td>
<td>0.26</td>
<td>0.16</td>
<td>0.08</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows the procedure for selecting a fan at elevations and temperatures other than standard.

A TABI 24 tube axial fan is to deliver 7978 CFM of air at 0.25" SP, 200°F. and 5000 Ft. elevation above sea level.

1. Since the air volume delivered by the fan is not affected by density, airflow remains 7978 CFM.
2. The static pressure must be corrected for non-standard conditions. At 200°F and 5000 Ft. elevation, the air density correction factor is 1.5. Multiply the static pressure by the correction factor.

\[
0.25" \text{SP} \times 1.5 = 0.375" \text{SP}
\]
3. From the fan performance table a TABI 24 at 7978 CFM and 0.375" SP requires 1605 RPM and 1.55 BHP.
4. The 1605 RPM needs no correction.
5. The horsepower selected must be divided by the correction factor.

\[
\frac{1.55 \text{BHP}}{1.50} = 1.03 \text{BHP}
\]

If a fan is selected to operate at high temperatures, the motor must be large enough to handle the increased BHP at any anticipated lower operating temperature where the air is more dense. Assume the air entering the TABI 24 fan at start up is 0°F. For 0°F and 5000 Ft. elevation the air density correction factor is 1.05.

\[
\frac{1.55 \text{BHP}}{1.05} \approx 1.48 \text{BHP}
\]

Therefore, a 1-1/2 HP motor is required.
Model Number Code

The model number system is designed to completely identify the fan. The correct code letters must be specified to designate direct or belt drive and high, medium or low duty for belt drive size 18 only. The remainder of the model number is determined by the size and performance selected from pages 7-23.

*Motor RPM **Motor HP
F = 680 4 = ¾ HP 30 = 3 HP
G = 880 3 = ½ HP 50 = 5 HP
B = 1140 5 = ½ HP 75 = 7½ HP
A = 1725 7 = ¾ HP 100 = 10 HP
10 = 1 HP 150 = 15 HP
15 = 1½ HP 200 = 20 HP
20 = 2 HP 250 = 25 HP

Performance Data

TADI 18

Max Motor Frame Size - 145T
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 75

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RPM</th>
<th>MOTOR HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TADI-18-438-B4</td>
<td>1140 RPM</td>
<td>¼ CFM</td>
</tr>
<tr>
<td>BHP</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>TADI-18-630-B4</td>
<td>5372 TS</td>
<td>¼ CFM</td>
</tr>
<tr>
<td>BHP</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>TADI-18-638-B3</td>
<td>¼ CFM</td>
<td>4190</td>
</tr>
<tr>
<td>BHP</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>TADI-18-610-A4</td>
<td>¼ CFM</td>
<td>2831</td>
</tr>
<tr>
<td>BHP</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>TADI-18-611-A4</td>
<td>¼ CFM</td>
<td>3060</td>
</tr>
<tr>
<td>BHP</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>TADI-18-613-A3</td>
<td>¼ CFM</td>
<td>3416</td>
</tr>
<tr>
<td>BHP</td>
<td>0.20</td>
<td>0.26</td>
</tr>
<tr>
<td>TADI-18-617-A3</td>
<td>¼ CFM</td>
<td>3666</td>
</tr>
<tr>
<td>BHP</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>TADI-18-323-A3</td>
<td>1725 RPM</td>
<td>¼ CFM</td>
</tr>
<tr>
<td>BHP</td>
<td>0.32</td>
<td>0.35</td>
</tr>
<tr>
<td>TADI-18-322-A3</td>
<td>¼ CFM</td>
<td>4674</td>
</tr>
<tr>
<td>BHP</td>
<td>0.45</td>
<td>0.49</td>
</tr>
<tr>
<td>TADI-18-620-A5</td>
<td>8129 TS</td>
<td>¼ CFM</td>
</tr>
<tr>
<td>BHP</td>
<td>0.48</td>
<td>0.52</td>
</tr>
<tr>
<td>TADI-18-623-A5</td>
<td>¼ CFM</td>
<td>4576</td>
</tr>
<tr>
<td>BHP</td>
<td>0.54</td>
<td>0.56</td>
</tr>
<tr>
<td>TADI-18-626-A7</td>
<td>¼ CFM</td>
<td>4847</td>
</tr>
<tr>
<td>BHP</td>
<td>0.66</td>
<td>0.70</td>
</tr>
<tr>
<td>TADI-18-336-A7</td>
<td>¼ CFM</td>
<td>5452</td>
</tr>
<tr>
<td>BHP</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>TADI-18-435-A7</td>
<td>¼ CFM</td>
<td>5568</td>
</tr>
<tr>
<td>BHP</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>TADI-18-634-A10</td>
<td>1 CFM</td>
<td>5873</td>
</tr>
<tr>
<td>BHP</td>
<td>1.07</td>
<td>1.10</td>
</tr>
</tbody>
</table>

STATIC PRESSURE IN INCHES W.G.

<table>
<thead>
<tr>
<th>RPM</th>
<th>0.000</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.625</th>
<th>0.750</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance shown is for Model TADI with inlet and outlet ducts.
Performance Data

TADI 20

Max Motor Frame Size - 145T
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 80

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RPM TS</th>
<th>MOTOR HP</th>
<th>STATIC PRESSURE IN INCHES W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>0.000</td>
</tr>
<tr>
<td>TADI-20-620-B4</td>
<td>1140</td>
<td>CFM</td>
<td>3862</td>
</tr>
<tr>
<td></td>
<td>5969</td>
<td>BHP</td>
<td>0.21</td>
</tr>
<tr>
<td>TADI-20-427-B4</td>
<td>1/4</td>
<td>CFM</td>
<td>4360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.27</td>
</tr>
<tr>
<td>TADI-20-432-B3</td>
<td>1/4</td>
<td>CFM</td>
<td>4783</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.35</td>
</tr>
<tr>
<td>TADI-20-331-B3</td>
<td>1/4</td>
<td>CFM</td>
<td>4502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.30</td>
</tr>
<tr>
<td>TADI-20-335-B5</td>
<td>1/2</td>
<td>CFM</td>
<td>5336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.49</td>
</tr>
<tr>
<td>TADI-20-605-A4</td>
<td>1/4</td>
<td>CFM</td>
<td>2890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.27</td>
</tr>
<tr>
<td>TADI-20-408-A4</td>
<td>1/4</td>
<td>CFM</td>
<td>3450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.23</td>
</tr>
<tr>
<td>TADI-20-312-A4</td>
<td>1/4</td>
<td>CFM</td>
<td>4112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.28</td>
</tr>
<tr>
<td>TADI-20-608-A3</td>
<td>1/2</td>
<td>CFM</td>
<td>3504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.31</td>
</tr>
<tr>
<td>TADI-20-411-A3</td>
<td>1/2</td>
<td>CFM</td>
<td>3996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.27</td>
</tr>
<tr>
<td>TADI-20-315-A3</td>
<td>1/2</td>
<td>CFM</td>
<td>4586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.32</td>
</tr>
<tr>
<td>TADI-20-613-A5</td>
<td>1/2</td>
<td>CFM</td>
<td>4401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.42</td>
</tr>
<tr>
<td>TADI-20-417-A5</td>
<td>1/2</td>
<td>CFM</td>
<td>5070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.45</td>
</tr>
<tr>
<td>TADI-20-322-A5</td>
<td>1/2</td>
<td>CFM</td>
<td>6816</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.56</td>
</tr>
<tr>
<td>TADI-20-618-A7</td>
<td>1/2</td>
<td>CFM</td>
<td>5482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.85</td>
</tr>
<tr>
<td>TADI-20-424-A7</td>
<td>1/2</td>
<td>CFM</td>
<td>6221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.75</td>
</tr>
<tr>
<td>TADI-20-328-A7</td>
<td>1/2</td>
<td>CFM</td>
<td>6395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.84</td>
</tr>
<tr>
<td>TADI-20-622-A10</td>
<td>1</td>
<td>CFM</td>
<td>6075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>0.82</td>
</tr>
<tr>
<td>TADI-20-335-A10</td>
<td>1</td>
<td>CFM</td>
<td>7201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>1.17</td>
</tr>
<tr>
<td>TADI-20-429-A10</td>
<td>1</td>
<td>CFM</td>
<td>7018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHP</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Performance shown is for Model TADI with inlet and outlet ducts.
Performance Data

TADI 24

Max Motor Frame Size - 184T
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 125

Performance shown is for Model TADI with inlet and outlet ducts.
Performance Data

TADI 30

Max Motor Frame Size - 184T
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 160

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RPM</th>
<th>MOTOR</th>
<th>MOTOR</th>
<th>STATIC PRESSURE IN INCHES W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HP</td>
<td>0.000</td>
<td>0.125</td>
</tr>
<tr>
<td>TADI-30-906-C4</td>
<td></td>
<td>CFM</td>
<td></td>
<td>6365</td>
</tr>
<tr>
<td>TADI-30-915-C4</td>
<td></td>
<td>CFM</td>
<td></td>
<td>7432</td>
</tr>
<tr>
<td>TADI-30-914-C3</td>
<td></td>
<td>CFM</td>
<td></td>
<td>7754</td>
</tr>
<tr>
<td>TADI-30-919-C3</td>
<td></td>
<td>CFM</td>
<td></td>
<td>6466</td>
</tr>
<tr>
<td>TADI-30-920-C5</td>
<td></td>
<td>CFM</td>
<td></td>
<td>9497</td>
</tr>
<tr>
<td>TADI-30-425-C5</td>
<td></td>
<td>CFM</td>
<td></td>
<td>9775</td>
</tr>
<tr>
<td>TADI-30-343-C7</td>
<td></td>
<td>CFM</td>
<td></td>
<td>11039</td>
</tr>
<tr>
<td>TADI-30-827-C7</td>
<td></td>
<td>CFM</td>
<td></td>
<td>11388</td>
</tr>
<tr>
<td>TADI-30-933-C10</td>
<td></td>
<td>CFM</td>
<td></td>
<td>12548</td>
</tr>
<tr>
<td>TADI-30-909-B5</td>
<td></td>
<td>CFM</td>
<td></td>
<td>8424</td>
</tr>
<tr>
<td>TADI-30-913-B5</td>
<td></td>
<td>CFM</td>
<td></td>
<td>9615</td>
</tr>
<tr>
<td>TADI-30-914-B7</td>
<td></td>
<td>CFM</td>
<td></td>
<td>10279</td>
</tr>
<tr>
<td>TADI-30-919-B7</td>
<td></td>
<td>CFM</td>
<td></td>
<td>11222</td>
</tr>
<tr>
<td>TADI-30-947-B10</td>
<td></td>
<td>CFM</td>
<td></td>
<td>11549</td>
</tr>
<tr>
<td>TADI-30-922-B10</td>
<td></td>
<td>CFM</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>TADI-30-924-B15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>12727</td>
</tr>
<tr>
<td>TADI-30-924-B15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>13666</td>
</tr>
<tr>
<td>TADI-30-940-B15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>14046</td>
</tr>
<tr>
<td>TADI-30-938-B20</td>
<td></td>
<td>CFM</td>
<td></td>
<td>15209</td>
</tr>
<tr>
<td>TADI-30-930-B20</td>
<td></td>
<td>CFM</td>
<td></td>
<td>16000</td>
</tr>
<tr>
<td>TADI-30-903-A15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>9276</td>
</tr>
<tr>
<td>TADI-30-905-A15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>10666</td>
</tr>
<tr>
<td>TADI-30-906-A15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>11218</td>
</tr>
<tr>
<td>TADI-30-909-A15</td>
<td></td>
<td>CFM</td>
<td></td>
<td>12314</td>
</tr>
<tr>
<td>TADI-30-909-A20</td>
<td></td>
<td>CFM</td>
<td></td>
<td>12746</td>
</tr>
<tr>
<td>TADI-30-413-A20</td>
<td></td>
<td>CFM</td>
<td></td>
<td>14398</td>
</tr>
<tr>
<td>TADI-30-414-A30</td>
<td></td>
<td>CFM</td>
<td></td>
<td>15594</td>
</tr>
<tr>
<td>TADI-30-419-A30</td>
<td></td>
<td>CFM</td>
<td></td>
<td>16981</td>
</tr>
<tr>
<td>TADI-30-623-A50</td>
<td></td>
<td>CFM</td>
<td></td>
<td>20393</td>
</tr>
<tr>
<td>TADI-30-428-A50</td>
<td></td>
<td>CFM</td>
<td></td>
<td>20634</td>
</tr>
</tbody>
</table>

Performance shown is for Model TADI with inlet and outlet ducts.

IAP Inc.
Performance Data

TADI 36

Max Motor Frame Size - 215T
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 240

Model TADI-36-608-C5

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>1/2 CFM</td>
<td>8423</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>3364</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>7016</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>5043</td>
</tr>
<tr>
<td></td>
<td>0.375</td>
<td>4484</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>3166</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>2395</td>
</tr>
<tr>
<td></td>
<td>0.750</td>
<td>1686</td>
</tr>
<tr>
<td></td>
<td>0.875</td>
<td>7530</td>
</tr>
</tbody>
</table>

Model TADI-36-315-C5

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>1/2 CFM</td>
<td>11959</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>9904</td>
</tr>
<tr>
<td></td>
<td>7255</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.375</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.750</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.875</td>
<td>448</td>
</tr>
</tbody>
</table>

Model TADI-36-612-C7

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1/2 CFM</td>
<td>12153</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>11027</td>
</tr>
<tr>
<td></td>
<td>3694</td>
<td>7916</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.375</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.750</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>0.875</td>
<td>448</td>
</tr>
</tbody>
</table>

Model TADI-36-418-C7

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1 CFM</td>
<td>15200</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13578</td>
</tr>
<tr>
<td></td>
<td>11487</td>
<td>3153</td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>1 CFM</td>
<td>14587</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13170</td>
</tr>
<tr>
<td></td>
<td>11816</td>
<td>10122</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Model TADI-36-422-C10

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1 CFM</td>
<td>15200</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13578</td>
</tr>
<tr>
<td></td>
<td>11487</td>
<td>3153</td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>1 CFM</td>
<td>14587</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13170</td>
</tr>
<tr>
<td></td>
<td>11816</td>
<td>10122</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Model TADI-36-424-C15

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1 CFM</td>
<td>15200</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13578</td>
</tr>
<tr>
<td></td>
<td>11487</td>
<td>3153</td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>1 CFM</td>
<td>14587</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>13170</td>
</tr>
<tr>
<td></td>
<td>11816</td>
<td>10122</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Model TADI-36-624-C20

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1 CFM</td>
<td>22165</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>20150</td>
</tr>
<tr>
<td></td>
<td>16356</td>
<td>18351</td>
</tr>
<tr>
<td></td>
<td>3 CFM</td>
<td>23865</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>21600</td>
</tr>
<tr>
<td></td>
<td>17355</td>
<td>15351</td>
</tr>
<tr>
<td></td>
<td>4 CFM</td>
<td>27365</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>25200</td>
</tr>
<tr>
<td></td>
<td>21955</td>
<td>19951</td>
</tr>
</tbody>
</table>

Model TADI-36-639-C30

<table>
<thead>
<tr>
<th>RPM TS</th>
<th>Motor HP</th>
<th>Static Pressure in Inches W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>1 CFM</td>
<td>22165</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>20150</td>
</tr>
<tr>
<td></td>
<td>16356</td>
<td>18351</td>
</tr>
<tr>
<td></td>
<td>3 CFM</td>
<td>23865</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>21600</td>
</tr>
<tr>
<td></td>
<td>17355</td>
<td>15351</td>
</tr>
<tr>
<td></td>
<td>4 CFM</td>
<td>27365</td>
</tr>
<tr>
<td></td>
<td>BHP</td>
<td>25200</td>
</tr>
<tr>
<td></td>
<td>21955</td>
<td>19951</td>
</tr>
</tbody>
</table>
Performance Data

TADI 42

Max Motor Frame Size - 256T
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 500

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RPM</th>
<th>MOTOR HP</th>
<th>CFM</th>
<th>BHP</th>
<th>STATIC PRESSURE IN INCHES W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>TADI-42-324-F7</td>
<td>680 RPM</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-615-F7</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-332-F10</td>
<td>7477 TS</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-618-F10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-425-F10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-628-F16</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-635-F20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-606-C10</td>
<td>860 RPM</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-413-C10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-317-C10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-615-C15</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-419-C15</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-332-C20</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-626-C20</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-425-C20</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-332-C20</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-618-C20</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-425-C20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-317-C20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-615-C30</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-419-C30</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-332-C30</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-404-B10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-306-B10</td>
<td>1</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-604-B15</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-310-B15</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-409-B15</td>
<td>1/4</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-307-B20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-412-B20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-315-B20</td>
<td>2</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-415-B30</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-319-B30</td>
<td>3</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-332-B50</td>
<td>5</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-619-B50</td>
<td>6</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-425-B50</td>
<td>5</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-628-B75</td>
<td>7/8</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-42-635-B100</td>
<td>10</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Performance shown is for Model TADI with inlet and outlet ducts.
Performance Data

TADI 48

Max Motor Frame Size - 256T
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 540

![Diagram of TADI 48](image)

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>RPM</th>
<th>Motor HP</th>
<th>CFM</th>
<th>TS</th>
<th>Static Pressure (inches W.G.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TADI-48-411-F7</td>
<td>680 RPM</td>
<td>1/4</td>
<td>20948</td>
<td>17153</td>
<td>0.00</td>
</tr>
<tr>
<td>TADI-48-406-F7</td>
<td>680 RPM</td>
<td>1/4</td>
<td>18275</td>
<td>16682</td>
<td>0.125</td>
</tr>
<tr>
<td>TADI-48-415-F10</td>
<td>8545 TS</td>
<td>1/4</td>
<td>22679</td>
<td>19551</td>
<td>0.25</td>
</tr>
<tr>
<td>TADI-48-610-F10</td>
<td>8545 TS</td>
<td>1</td>
<td>21257</td>
<td>18641</td>
<td>0.375</td>
</tr>
<tr>
<td>TADI-48-423-F15</td>
<td>8545 TS</td>
<td>1/2</td>
<td>28435</td>
<td>22078</td>
<td>0.5</td>
</tr>
<tr>
<td>TADI-48-616-F16</td>
<td>8545 TS</td>
<td>1/2</td>
<td>28435</td>
<td>22078</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-48-601-F20</td>
<td>8545 TS</td>
<td>2</td>
<td>32015</td>
<td>26373</td>
<td>0.75</td>
</tr>
<tr>
<td>TADI-48-630-F30</td>
<td>8545 TS</td>
<td>3</td>
<td>3160</td>
<td>26173</td>
<td>0.875</td>
</tr>
<tr>
<td>TADI-48-630-C50</td>
<td>680 RPM</td>
<td>1</td>
<td>18890</td>
<td>16575</td>
<td>0.00</td>
</tr>
<tr>
<td>TADI-48-606-C10</td>
<td>680 RPM</td>
<td>1</td>
<td>21342</td>
<td>18393</td>
<td>0.125</td>
</tr>
<tr>
<td>TADI-48-411-C15</td>
<td>680 RPM</td>
<td>1/4</td>
<td>23113</td>
<td>21073</td>
<td>0.25</td>
</tr>
<tr>
<td>TADI-48-411-C16</td>
<td>10807 TS</td>
<td>1/4</td>
<td>29864</td>
<td>25340</td>
<td>0.375</td>
</tr>
<tr>
<td>TADI-48-406-C20</td>
<td>10807 TS</td>
<td>1/2</td>
<td>29864</td>
<td>25340</td>
<td>0.5</td>
</tr>
<tr>
<td>TADI-48-610-C20</td>
<td>10807 TS</td>
<td>2</td>
<td>32407</td>
<td>29317</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-48-415-C20</td>
<td>10807 TS</td>
<td>3</td>
<td>38836</td>
<td>33230</td>
<td>0.75</td>
</tr>
<tr>
<td>TADI-48-416-C20</td>
<td>10807 TS</td>
<td>5</td>
<td>89106</td>
<td>75525</td>
<td>0.875</td>
</tr>
<tr>
<td>TADI-48-416-C50</td>
<td>1140 RPM</td>
<td>1</td>
<td>28779</td>
<td>23703</td>
<td>0.00</td>
</tr>
<tr>
<td>TADI-48-403-B20</td>
<td>1140 RPM</td>
<td>2</td>
<td>27106</td>
<td>23586</td>
<td>0.125</td>
</tr>
<tr>
<td>TADI-48-306-B20</td>
<td>1140 RPM</td>
<td>2</td>
<td>27106</td>
<td>23586</td>
<td>0.25</td>
</tr>
<tr>
<td>TADI-48-403-B30</td>
<td>1140 RPM</td>
<td>3</td>
<td>30878</td>
<td>26580</td>
<td>0.375</td>
</tr>
<tr>
<td>TADI-48-407-B30</td>
<td>1140 RPM</td>
<td>3</td>
<td>30878</td>
<td>26580</td>
<td>0.5</td>
</tr>
<tr>
<td>TADI-48-610-B50</td>
<td>1140 RPM</td>
<td>5</td>
<td>39587</td>
<td>36089</td>
<td>0.625</td>
</tr>
<tr>
<td>TADI-48-601-B50</td>
<td>1140 RPM</td>
<td>5</td>
<td>672</td>
<td>591</td>
<td>0.75</td>
</tr>
<tr>
<td>TADI-48-415-B50</td>
<td>1140 RPM</td>
<td>5</td>
<td>35454</td>
<td>31473</td>
<td>0.875</td>
</tr>
<tr>
<td>TADI-48-416-B50</td>
<td>1140 RPM</td>
<td>7/4</td>
<td>42346</td>
<td>36927</td>
<td>0.00</td>
</tr>
<tr>
<td>TADI-48-431-B75</td>
<td>1140 RPM</td>
<td>7/4</td>
<td>42346</td>
<td>36927</td>
<td>0.125</td>
</tr>
<tr>
<td>TADI-48-616-B75</td>
<td>1140 RPM</td>
<td>7/4</td>
<td>43817</td>
<td>38354</td>
<td>0.25</td>
</tr>
<tr>
<td>TADI-48-432-B75</td>
<td>1140 RPM</td>
<td>7/4</td>
<td>43817</td>
<td>38354</td>
<td>0.375</td>
</tr>
<tr>
<td>TADI-48-602-C10</td>
<td>1140 RPM</td>
<td>10</td>
<td>47426</td>
<td>40505</td>
<td>0.5</td>
</tr>
<tr>
<td>TADI-48-431-B100</td>
<td>1140 RPM</td>
<td>10</td>
<td>47426</td>
<td>40505</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Performance shown is for Model TADI with inlet and outlet ducts.
Performance Data

TABI 18L/M

Max RPM - TABI 18L - 3000
TABI 18M - 2710
Max Motor Frame Size - 145T
Shaft Dia. - 1"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 110

TABI 18L

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>FRPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1890</td>
<td>8906</td>
<td>1914</td>
<td>0.19</td>
<td>0.125</td>
</tr>
<tr>
<td>1/4</td>
<td>2005</td>
<td>9448</td>
<td>2054</td>
<td>0.23</td>
<td>0.250</td>
</tr>
<tr>
<td>1/4</td>
<td>2120</td>
<td>9990</td>
<td>2192</td>
<td>0.27</td>
<td>0.375</td>
</tr>
<tr>
<td>1/4</td>
<td>2220</td>
<td>10462</td>
<td>2212</td>
<td>0.31</td>
<td>0.500</td>
</tr>
<tr>
<td>1/4</td>
<td>2320</td>
<td>10993</td>
<td>2431</td>
<td>0.35</td>
<td>0.625</td>
</tr>
<tr>
<td>1/2</td>
<td>2435</td>
<td>11475</td>
<td>2567</td>
<td>0.40</td>
<td>0.750</td>
</tr>
<tr>
<td>1/2</td>
<td>2550</td>
<td>12017</td>
<td>2702</td>
<td>0.46</td>
<td>1.000</td>
</tr>
<tr>
<td>1/2</td>
<td>2665</td>
<td>12559</td>
<td>2837</td>
<td>0.53</td>
<td>1.250</td>
</tr>
<tr>
<td>3/4</td>
<td>2790</td>
<td>13148</td>
<td>2982</td>
<td>0.60</td>
<td>1/4</td>
</tr>
<tr>
<td>3/4</td>
<td>3000</td>
<td>14137</td>
<td>3226</td>
<td>0.75</td>
<td>1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>FRPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>1610</td>
<td>7597</td>
<td>2171</td>
<td>0.22</td>
<td>0.125</td>
</tr>
<tr>
<td>3/4</td>
<td>1710</td>
<td>8058</td>
<td>2331</td>
<td>0.26</td>
<td>0.250</td>
</tr>
<tr>
<td>3/4</td>
<td>1785</td>
<td>8412</td>
<td>2450</td>
<td>0.30</td>
<td>0.375</td>
</tr>
<tr>
<td>3/4</td>
<td>1880</td>
<td>8765</td>
<td>2568</td>
<td>0.34</td>
<td>0.500</td>
</tr>
<tr>
<td>1/2</td>
<td>2000</td>
<td>9425</td>
<td>2788</td>
<td>0.42</td>
<td>0.625</td>
</tr>
<tr>
<td>1/2</td>
<td>2140</td>
<td>10085</td>
<td>3004</td>
<td>0.51</td>
<td>0.750</td>
</tr>
<tr>
<td>1/2</td>
<td>2250</td>
<td>10603</td>
<td>3173</td>
<td>0.59</td>
<td>1.000</td>
</tr>
<tr>
<td>1/2</td>
<td>2350</td>
<td>11074</td>
<td>3327</td>
<td>0.67</td>
<td>1.250</td>
</tr>
<tr>
<td>3/4</td>
<td>2450</td>
<td>11545</td>
<td>3479</td>
<td>0.76</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>2580</td>
<td>12168</td>
<td>3677</td>
<td>0.88</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>2710</td>
<td>12771</td>
<td>3874</td>
<td>1.02</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Static Pressure in Inches W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>FRPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1890</td>
<td>8906</td>
<td>1914</td>
<td>0.19</td>
<td>0.125</td>
</tr>
<tr>
<td>1/4</td>
<td>2005</td>
<td>9448</td>
<td>2054</td>
<td>0.23</td>
<td>0.250</td>
</tr>
<tr>
<td>1/4</td>
<td>2120</td>
<td>9990</td>
<td>2192</td>
<td>0.27</td>
<td>0.375</td>
</tr>
<tr>
<td>1/4</td>
<td>2220</td>
<td>10462</td>
<td>2212</td>
<td>0.31</td>
<td>0.500</td>
</tr>
<tr>
<td>1/4</td>
<td>2320</td>
<td>10993</td>
<td>2431</td>
<td>0.35</td>
<td>0.625</td>
</tr>
<tr>
<td>1/2</td>
<td>2435</td>
<td>11475</td>
<td>2567</td>
<td>0.40</td>
<td>0.750</td>
</tr>
<tr>
<td>1/2</td>
<td>2550</td>
<td>12017</td>
<td>2702</td>
<td>0.46</td>
<td>1.000</td>
</tr>
<tr>
<td>1/2</td>
<td>2665</td>
<td>12559</td>
<td>2837</td>
<td>0.53</td>
<td>1.250</td>
</tr>
<tr>
<td>3/4</td>
<td>2790</td>
<td>13148</td>
<td>2982</td>
<td>0.60</td>
<td>1/4</td>
</tr>
<tr>
<td>3/4</td>
<td>3000</td>
<td>14137</td>
<td>3226</td>
<td>0.75</td>
<td>1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>FRPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>1610</td>
<td>7597</td>
<td>2171</td>
<td>0.22</td>
<td>0.125</td>
</tr>
<tr>
<td>3/4</td>
<td>1710</td>
<td>8058</td>
<td>2331</td>
<td>0.26</td>
<td>0.250</td>
</tr>
<tr>
<td>3/4</td>
<td>1785</td>
<td>8412</td>
<td>2450</td>
<td>0.30</td>
<td>0.375</td>
</tr>
<tr>
<td>3/4</td>
<td>1880</td>
<td>8765</td>
<td>2568</td>
<td>0.34</td>
<td>0.500</td>
</tr>
<tr>
<td>1/2</td>
<td>2000</td>
<td>9425</td>
<td>2788</td>
<td>0.42</td>
<td>0.625</td>
</tr>
<tr>
<td>1/2</td>
<td>2140</td>
<td>10085</td>
<td>3004</td>
<td>0.51</td>
<td>0.750</td>
</tr>
<tr>
<td>1/2</td>
<td>2250</td>
<td>10603</td>
<td>3173</td>
<td>0.59</td>
<td>1.000</td>
</tr>
<tr>
<td>1/2</td>
<td>2350</td>
<td>11074</td>
<td>3327</td>
<td>0.67</td>
<td>1.250</td>
</tr>
<tr>
<td>3/4</td>
<td>2450</td>
<td>11545</td>
<td>3479</td>
<td>0.76</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>2580</td>
<td>12168</td>
<td>3677</td>
<td>0.88</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>2710</td>
<td>12771</td>
<td>3874</td>
<td>1.02</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Performance shown is for Model TAB1 with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 18H

Max RPM - 2290
Max Motor Frame Size - 145T
Shaft Dia. - 1"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 110

TABI 18H

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.625</th>
<th>0.750</th>
<th>1.000</th>
<th>1.250</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1220</td>
<td>5749</td>
<td>2783</td>
<td>2432</td>
<td>1927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.23</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1270</td>
<td>5985</td>
<td>2919</td>
<td>2595</td>
<td>2155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1325</td>
<td>6244</td>
<td>3069</td>
<td>2769</td>
<td>2377</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.32</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1375</td>
<td>6480</td>
<td>3204</td>
<td>2922</td>
<td>2566</td>
<td>2041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.33</td>
<td>0.35</td>
<td>0.36</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1435</td>
<td>6782</td>
<td>3366</td>
<td>3104</td>
<td>2784</td>
<td>2348</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.37</td>
<td>0.40</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1485</td>
<td>6996</td>
<td>3500</td>
<td>3254</td>
<td>2949</td>
<td>2571</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.41</td>
<td>0.44</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1535</td>
<td>7234</td>
<td>3633</td>
<td>3402</td>
<td>3112</td>
<td>2763</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.48</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1585</td>
<td>7469</td>
<td>3764</td>
<td>3547</td>
<td>3273</td>
<td>2953</td>
<td>2534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.49</td>
<td>0.52</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1635</td>
<td>7705</td>
<td>3895</td>
<td>3686</td>
<td>3429</td>
<td>3139</td>
<td>2761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.57</td>
<td>0.60</td>
<td>0.61</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1680</td>
<td>7917</td>
<td>4012</td>
<td>3810</td>
<td>3567</td>
<td>3291</td>
<td>2961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1725</td>
<td>8129</td>
<td>4129</td>
<td>3934</td>
<td>3703</td>
<td>3439</td>
<td>3123</td>
<td>2724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.63</td>
<td>0.66</td>
<td>0.69</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1770</td>
<td>8341</td>
<td>4246</td>
<td>4058</td>
<td>3839</td>
<td>3586</td>
<td>3294</td>
<td>2930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.68</td>
<td>0.71</td>
<td>0.74</td>
<td>0.76</td>
<td>0.77</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1815</td>
<td>8553</td>
<td>4362</td>
<td>4181</td>
<td>3974</td>
<td>3731</td>
<td>3482</td>
<td>3132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.73</td>
<td>0.76</td>
<td>0.80</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1860</td>
<td>8765</td>
<td>4479</td>
<td>4303</td>
<td>4108</td>
<td>3873</td>
<td>3619</td>
<td>3308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.79</td>
<td>0.82</td>
<td>0.85</td>
<td>0.88</td>
<td>0.89</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1905</td>
<td>8977</td>
<td>4596</td>
<td>4425</td>
<td>4241</td>
<td>4011</td>
<td>3768</td>
<td>3480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.84</td>
<td>0.88</td>
<td>0.91</td>
<td>0.94</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1950</td>
<td>9189</td>
<td>4711</td>
<td>4547</td>
<td>4369</td>
<td>4149</td>
<td>3915</td>
<td>3649</td>
<td>2937</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.94</td>
<td>0.97</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1995</td>
<td>9401</td>
<td>4826</td>
<td>4668</td>
<td>4494</td>
<td>4286</td>
<td>4061</td>
<td>3817</td>
<td>3160</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>0.97</td>
<td>1.00</td>
<td>1.04</td>
<td>1.07</td>
<td>1.09</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>2050</td>
<td>9660</td>
<td>4968</td>
<td>4815</td>
<td>4646</td>
<td>4452</td>
<td>4238</td>
<td>4006</td>
<td>3411</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>1.05</td>
<td>1.08</td>
<td>1.12</td>
<td>1.15</td>
<td>1.18</td>
<td>1.19</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>2110</td>
<td>9943</td>
<td>5122</td>
<td>4976</td>
<td>4811</td>
<td>4631</td>
<td>4424</td>
<td>4203</td>
<td>3674</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>1.14</td>
<td>1.18</td>
<td>1.21</td>
<td>1.25</td>
<td>1.28</td>
<td>1.30</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>2170</td>
<td>10228</td>
<td>5276</td>
<td>5136</td>
<td>4976</td>
<td>4810</td>
<td>4608</td>
<td>4399</td>
<td>3905</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>1.24</td>
<td>1.27</td>
<td>1.31</td>
<td>1.35</td>
<td>1.38</td>
<td>1.41</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>2230</td>
<td>10508</td>
<td>5429</td>
<td>5293</td>
<td>5140</td>
<td>4984</td>
<td>4790</td>
<td>4592</td>
<td>4133</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>1.34</td>
<td>1.38</td>
<td>1.42</td>
<td>1.47</td>
<td>1.49</td>
<td>1.52</td>
<td>1.54</td>
<td>1.53</td>
</tr>
<tr>
<td>1 1/2</td>
<td>2290</td>
<td>10791</td>
<td>5582</td>
<td>5450</td>
<td>5303</td>
<td>5151</td>
<td>4971</td>
<td>4780</td>
<td>4357</td>
<td>3805</td>
</tr>
<tr>
<td>BHP</td>
<td></td>
<td></td>
<td>1.45</td>
<td>1.49</td>
<td>1.53</td>
<td>1.57</td>
<td>1.61</td>
<td>1.64</td>
<td>1.67</td>
<td>1.66</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 20

Max RPM - 2225
Max Motor Frame Size - 182T
Shaft Dia. - 1"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 125

Static Pressure in Inches W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>CFM</th>
<th>BHP</th>
<th>RPM</th>
<th>CFM</th>
<th>BHP</th>
<th>RPM</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1095</td>
<td>5733</td>
<td>BHP</td>
<td>0.23</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1145</td>
<td>5995</td>
<td>CFM</td>
<td>3454</td>
<td>3021</td>
<td>2414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1200</td>
<td>6283</td>
<td>CFM</td>
<td>3653</td>
<td>3255</td>
<td>2756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1250</td>
<td>6545</td>
<td>CFM</td>
<td>3832</td>
<td>3459</td>
<td>2999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1310</td>
<td>6859</td>
<td>CFM</td>
<td>4048</td>
<td>3701</td>
<td>3285</td>
<td>2708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1370</td>
<td>7173</td>
<td>CFM</td>
<td>4259</td>
<td>3939</td>
<td>3560</td>
<td>3066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1430</td>
<td>7487</td>
<td>CFM</td>
<td>4470</td>
<td>4175</td>
<td>3818</td>
<td>3389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1480</td>
<td>7749</td>
<td>CFM</td>
<td>4646</td>
<td>4369</td>
<td>4029</td>
<td>3639</td>
<td>3128</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1530</td>
<td>8011</td>
<td>CFM</td>
<td>4821</td>
<td>4560</td>
<td>4233</td>
<td>3875</td>
<td>3450</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1580</td>
<td>8273</td>
<td>CFM</td>
<td>4995</td>
<td>4743</td>
<td>4435</td>
<td>4102</td>
<td>3709</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1630</td>
<td>8535</td>
<td>CFM</td>
<td>5169</td>
<td>4924</td>
<td>4635</td>
<td>4316</td>
<td>3950</td>
<td>3483</td>
</tr>
<tr>
<td>1</td>
<td>1685</td>
<td>8823</td>
<td>CFM</td>
<td>5357</td>
<td>5123</td>
<td>4853</td>
<td>4553</td>
<td>4212</td>
<td>3837</td>
</tr>
<tr>
<td>1</td>
<td>1725</td>
<td>9032</td>
<td>CFM</td>
<td>5494</td>
<td>5267</td>
<td>5010</td>
<td>4718</td>
<td>4400</td>
<td>4035</td>
</tr>
<tr>
<td>1</td>
<td>1765</td>
<td>9242</td>
<td>CFM</td>
<td>5630</td>
<td>5410</td>
<td>5166</td>
<td>4881</td>
<td>4580</td>
<td>4229</td>
</tr>
<tr>
<td>1</td>
<td>1805</td>
<td>9451</td>
<td>CFM</td>
<td>5766</td>
<td>5553</td>
<td>5322</td>
<td>5043</td>
<td>4753</td>
<td>4420</td>
</tr>
<tr>
<td>1/2</td>
<td>1860</td>
<td>9844</td>
<td>CFM</td>
<td>6021</td>
<td>5820</td>
<td>5607</td>
<td>5343</td>
<td>5074</td>
<td>4775</td>
</tr>
<tr>
<td>1/2</td>
<td>1940</td>
<td>10158</td>
<td>CFM</td>
<td>6224</td>
<td>6032</td>
<td>5826</td>
<td>5581</td>
<td>5322</td>
<td>5045</td>
</tr>
<tr>
<td>1/2</td>
<td>2000</td>
<td>10472</td>
<td>CFM</td>
<td>6427</td>
<td>6244</td>
<td>6044</td>
<td>5817</td>
<td>5565</td>
<td>5304</td>
</tr>
<tr>
<td>1/2</td>
<td>2060</td>
<td>10786</td>
<td>CFM</td>
<td>6629</td>
<td>6454</td>
<td>6261</td>
<td>6051</td>
<td>5807</td>
<td>5560</td>
</tr>
<tr>
<td>2</td>
<td>2115</td>
<td>11074</td>
<td>BHP</td>
<td>1.42</td>
<td>1.46</td>
<td>1.49</td>
<td>1.53</td>
<td>1.57</td>
<td>1.62</td>
</tr>
<tr>
<td>2</td>
<td>2170</td>
<td>11382</td>
<td>BHP</td>
<td>1.53</td>
<td>1.58</td>
<td>1.61</td>
<td>1.65</td>
<td>1.69</td>
<td>1.74</td>
</tr>
<tr>
<td>2</td>
<td>2225</td>
<td>11650</td>
<td>BHP</td>
<td>1.76</td>
<td>1.83</td>
<td>1.86</td>
<td>1.90</td>
<td>1.95</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 24

Max RPM - 1990
Max Motor Frame Size - 184T
Shaft Dia. - 1"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 180

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>1.250</th>
<th>1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>900</td>
<td>5655</td>
<td>CFM</td>
<td>4431</td>
<td>3625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.27</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>970</td>
<td>6096</td>
<td>CFM</td>
<td>4888</td>
<td>4170</td>
<td>3090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.34</td>
<td>0.36</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1040</td>
<td>6535</td>
<td>CFM</td>
<td>5318</td>
<td>4685</td>
<td>3927</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.41</td>
<td>0.44</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1110</td>
<td>6874</td>
<td>CFM</td>
<td>5744</td>
<td>5173</td>
<td>4503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.50</td>
<td>0.53</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1165</td>
<td>7320</td>
<td>CFM</td>
<td>6075</td>
<td>5548</td>
<td>4931</td>
<td>4178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.57</td>
<td>0.61</td>
<td>0.63</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1220</td>
<td>7865</td>
<td>CFM</td>
<td>6406</td>
<td>5917</td>
<td>5349</td>
<td>4696</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.66</td>
<td>0.69</td>
<td>0.72</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1275</td>
<td>8011</td>
<td>CFM</td>
<td>6733</td>
<td>6281</td>
<td>5747</td>
<td>5145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.74</td>
<td>0.78</td>
<td>0.81</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1315</td>
<td>8262</td>
<td>CFM</td>
<td>6970</td>
<td>6543</td>
<td>6027</td>
<td>5461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.81</td>
<td>0.85</td>
<td>0.89</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1390</td>
<td>8545</td>
<td>CFM</td>
<td>7233</td>
<td>6836</td>
<td>6339</td>
<td>5807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.89</td>
<td>0.93</td>
<td>0.97</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1405</td>
<td>8828</td>
<td>CFM</td>
<td>7496</td>
<td>7117</td>
<td>6647</td>
<td>6148</td>
<td>4898</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>0.98</td>
<td>1.02</td>
<td>1.07</td>
<td>1.09</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1455</td>
<td>9142</td>
<td>CFM</td>
<td>7786</td>
<td>7424</td>
<td>6984</td>
<td>6514</td>
<td>5398</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.08</td>
<td>1.13</td>
<td>1.18</td>
<td>1.21</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1505</td>
<td>9456</td>
<td>CFM</td>
<td>8076</td>
<td>7730</td>
<td>7318</td>
<td>6866</td>
<td>5841</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.20</td>
<td>1.24</td>
<td>1.29</td>
<td>1.33</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1555</td>
<td>9770</td>
<td>CFM</td>
<td>8365</td>
<td>8033</td>
<td>7649</td>
<td>7214</td>
<td>6249</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.32</td>
<td>1.36</td>
<td>1.41</td>
<td>1.46</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1605</td>
<td>10085</td>
<td>CFM</td>
<td>8653</td>
<td>8336</td>
<td>7978</td>
<td>7558</td>
<td>6646</td>
<td>5479</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.44</td>
<td>1.49</td>
<td>1.55</td>
<td>1.60</td>
<td>1.65</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1650</td>
<td>10367</td>
<td>CFM</td>
<td>8912</td>
<td>8606</td>
<td>8271</td>
<td>7863</td>
<td>6993</td>
<td>5934</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.57</td>
<td>1.62</td>
<td>1.67</td>
<td>1.72</td>
<td>1.78</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1695</td>
<td>10650</td>
<td>CFM</td>
<td>9171</td>
<td>8876</td>
<td>8558</td>
<td>8165</td>
<td>7336</td>
<td>6381</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.70</td>
<td>1.75</td>
<td>1.80</td>
<td>1.86</td>
<td>1.92</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1740</td>
<td>10933</td>
<td>CFM</td>
<td>9429</td>
<td>9145</td>
<td>8835</td>
<td>8465</td>
<td>7675</td>
<td>6763</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.83</td>
<td>1.88</td>
<td>1.94</td>
<td>2.00</td>
<td>2.07</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1790</td>
<td>11247</td>
<td>CFM</td>
<td>9716</td>
<td>9443</td>
<td>9142</td>
<td>8796</td>
<td>8034</td>
<td>7170</td>
<td>6081</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.99</td>
<td>2.05</td>
<td>2.10</td>
<td>2.16</td>
<td>2.25</td>
<td>2.29</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>1840</td>
<td>11581</td>
<td>CFM</td>
<td>10002</td>
<td>9740</td>
<td>9447</td>
<td>9125</td>
<td>8386</td>
<td>7571</td>
<td>6587</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.16</td>
<td>2.21</td>
<td>2.27</td>
<td>2.33</td>
<td>2.43</td>
<td>2.48</td>
<td>2.47</td>
</tr>
<tr>
<td>3</td>
<td>1890</td>
<td>11875</td>
<td>CFM</td>
<td>10287</td>
<td>10035</td>
<td>9751</td>
<td>9452</td>
<td>8735</td>
<td>7958</td>
<td>7084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.34</td>
<td>2.39</td>
<td>2.45</td>
<td>2.51</td>
<td>2.62</td>
<td>2.68</td>
<td>2.71</td>
</tr>
<tr>
<td>3</td>
<td>1940</td>
<td>12189</td>
<td>CFM</td>
<td>10573</td>
<td>10327</td>
<td>10054</td>
<td>9776</td>
<td>9080</td>
<td>8340</td>
<td>7517</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.52</td>
<td>2.58</td>
<td>2.64</td>
<td>2.71</td>
<td>2.82</td>
<td>2.89</td>
<td>2.93</td>
</tr>
<tr>
<td>3</td>
<td>1990</td>
<td>12504</td>
<td>CFM</td>
<td>10858</td>
<td>10618</td>
<td>10355</td>
<td>10094</td>
<td>9421</td>
<td>8718</td>
<td>7925</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.72</td>
<td>2.78</td>
<td>2.84</td>
<td>2.91</td>
<td>3.03</td>
<td>3.11</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 30

Max RPM - 1815
Max Motor Frame Size - 213T
Shaft Dia. - 1¾"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 250

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>805</td>
<td>6322</td>
<td>8988</td>
<td>0.44</td>
</tr>
<tr>
<td>½</td>
<td>865</td>
<td>6794</td>
<td>7663</td>
<td>0.54</td>
</tr>
<tr>
<td>¾</td>
<td>925</td>
<td>7285</td>
<td>8333</td>
<td>0.58</td>
</tr>
<tr>
<td>¾</td>
<td>985</td>
<td>7736</td>
<td>8694</td>
<td>0.79</td>
</tr>
<tr>
<td>1</td>
<td>1025</td>
<td>8050</td>
<td>9431</td>
<td>0.88</td>
</tr>
<tr>
<td>1</td>
<td>1055</td>
<td>8286</td>
<td>9768</td>
<td>0.98</td>
</tr>
<tr>
<td>1</td>
<td>1085</td>
<td>8522</td>
<td>10082</td>
<td>1.04</td>
</tr>
<tr>
<td>1¼</td>
<td>1140</td>
<td>8954</td>
<td>10673</td>
<td>1.20</td>
</tr>
<tr>
<td>1¼</td>
<td>1190</td>
<td>9348</td>
<td>11200</td>
<td>1.36</td>
</tr>
<tr>
<td>1¼</td>
<td>1240</td>
<td>9739</td>
<td>11724</td>
<td>1.54</td>
</tr>
<tr>
<td>1½</td>
<td>1275</td>
<td>10014</td>
<td>12090</td>
<td>1.67</td>
</tr>
<tr>
<td>1½</td>
<td>1310</td>
<td>10289</td>
<td>12454</td>
<td>1.80</td>
</tr>
<tr>
<td>1½</td>
<td>1345</td>
<td>10564</td>
<td>12818</td>
<td>1.95</td>
</tr>
<tr>
<td>2</td>
<td>1380</td>
<td>10917</td>
<td>13285</td>
<td>2.15</td>
</tr>
<tr>
<td>2</td>
<td>1440</td>
<td>11310</td>
<td>13802</td>
<td>2.38</td>
</tr>
<tr>
<td>2</td>
<td>1480</td>
<td>11702</td>
<td>14318</td>
<td>2.63</td>
</tr>
<tr>
<td>2</td>
<td>1540</td>
<td>12065</td>
<td>14833</td>
<td>2.90</td>
</tr>
<tr>
<td>2</td>
<td>1585</td>
<td>12527</td>
<td>15398</td>
<td>3.22</td>
</tr>
<tr>
<td>2</td>
<td>1650</td>
<td>12969</td>
<td>15962</td>
<td>3.56</td>
</tr>
<tr>
<td>5</td>
<td>1705</td>
<td>13391</td>
<td>16525</td>
<td>3.92</td>
</tr>
<tr>
<td>5</td>
<td>1760</td>
<td>13823</td>
<td>17087</td>
<td>4.30</td>
</tr>
<tr>
<td>5</td>
<td>1815</td>
<td>14255</td>
<td>17648</td>
<td>4.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.750</th>
<th>1.00</th>
<th>1.250</th>
<th>1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8988</td>
<td>5791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7663</td>
<td>6830</td>
<td>6035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8333</td>
<td>7380</td>
<td>6172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8694</td>
<td>8111</td>
<td>7080</td>
<td>5438</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9431</td>
<td>8579</td>
<td>7652</td>
<td>6356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9768</td>
<td>8927</td>
<td>8064</td>
<td>6695</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10082</td>
<td>9273</td>
<td>8442</td>
<td>7408</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10673</td>
<td>9900</td>
<td>9128</td>
<td>8213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11200</td>
<td>10464</td>
<td>9737</td>
<td>8927</td>
<td>6211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11724</td>
<td>11025</td>
<td>10328</td>
<td>9587</td>
<td>7505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12090</td>
<td>11416</td>
<td>10736</td>
<td>10025</td>
<td>8139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12454</td>
<td>11805</td>
<td>11140</td>
<td>10459</td>
<td>8761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12818</td>
<td>12192</td>
<td>11542</td>
<td>10889</td>
<td>9312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13285</td>
<td>12587</td>
<td>12055</td>
<td>11435</td>
<td>9969</td>
<td>7609</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13802</td>
<td>13234</td>
<td>12820</td>
<td>12022</td>
<td>10666</td>
<td>8816</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14318</td>
<td>13778</td>
<td>13181</td>
<td>12602</td>
<td>11379</td>
<td>9715</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14833</td>
<td>14319</td>
<td>13741</td>
<td>13178</td>
<td>12009</td>
<td>10560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15398</td>
<td>14911</td>
<td>14384</td>
<td>13806</td>
<td>12694</td>
<td>11366</td>
<td>9583</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15962</td>
<td>15493</td>
<td>14962</td>
<td>14429</td>
<td>13370</td>
<td>12158</td>
<td>10579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16525</td>
<td>16071</td>
<td>15667</td>
<td>15047</td>
<td>14038</td>
<td>12837</td>
<td>11553</td>
<td>9390</td>
</tr>
<tr>
<td></td>
<td>17087</td>
<td>16647</td>
<td>16169</td>
<td>15883</td>
<td>14881</td>
<td>13838</td>
<td>12368</td>
<td>10731</td>
</tr>
<tr>
<td></td>
<td>17648</td>
<td>17221</td>
<td>16767</td>
<td>16277</td>
<td>15321</td>
<td>14326</td>
<td>13186</td>
<td>11723</td>
</tr>
<tr>
<td></td>
<td>1815</td>
<td>17725</td>
<td>17221</td>
<td>16767</td>
<td>16277</td>
<td>15321</td>
<td>14326</td>
<td>13186</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 36

Max RPM - 1710
Max Motor Frame Size - 215T
Shaft Dia. - 1\(\frac{1}{2}\)"
Fan Tube Gauge - 12
Approx. Weight (lbs.) - 330

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>780</td>
<td>7163</td>
<td>10334</td>
<td>0.67</td>
<td>1/4</td>
<td>810</td>
<td>7834</td>
<td>11210</td>
<td>0.80</td>
<td>1</td>
<td>885</td>
<td>8058</td>
<td>11986</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>890</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>945</td>
<td>8906</td>
<td>13518</td>
<td>1.25</td>
<td>1/2</td>
<td>985</td>
<td>9283</td>
<td>14191</td>
<td>1.41</td>
<td>1</td>
<td>1025</td>
<td>9660</td>
<td>14960</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13730</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1070</td>
<td>10085</td>
<td>16271</td>
<td>2.00</td>
<td>1</td>
<td>1145</td>
<td>10791</td>
<td>16844</td>
<td>2.19</td>
<td>1</td>
<td>1225</td>
<td>11545</td>
<td>18148</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15544</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17223</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>1170</td>
<td>11292</td>
<td>18797</td>
<td>2.93</td>
<td>5</td>
<td>1285</td>
<td>12206</td>
<td>19282</td>
<td>3.13</td>
<td>5</td>
<td>1345</td>
<td>12876</td>
<td>20089</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19261</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1580</td>
<td>14703</td>
<td>23538</td>
<td>5.41</td>
<td>7/2</td>
<td>1610</td>
<td>15174</td>
<td>23870</td>
<td>5.94</td>
<td>7/2</td>
<td>1680</td>
<td>15845</td>
<td>25133</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24468</td>
<td></td>
</tr>
<tr>
<td>2 1/2</td>
<td>1670</td>
<td>16118</td>
<td>25928</td>
<td>7.00</td>
<td>7/2</td>
<td>1710</td>
<td>16118</td>
<td>25301</td>
<td>7.06</td>
<td>7/2</td>
<td>1760</td>
<td>17108</td>
<td>27261</td>
<td>7.06</td>
</tr>
</tbody>
</table>

Static Pressure in Inches W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>1.250</th>
<th>1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>780</td>
<td>7163</td>
<td>10334</td>
<td>8551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>945</td>
<td>8906</td>
<td>13518</td>
<td>12266</td>
<td>10797</td>
<td>8693</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1070</td>
<td>10085</td>
<td>16271</td>
<td>15236</td>
<td>14161</td>
<td>12894</td>
<td>9015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts. BHP does not include drive losses.
Performance Data

TABI 42

Max RPM - 1590
Max Motor Frame Size - 215T
Shaft Dia. - 1 1/2"
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 450

Performance Data

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>775</td>
<td>7862</td>
<td>13918</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>750</td>
<td>8247</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1 1/2</td>
<td>790</td>
<td>8887</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1 1/2</td>
<td>825</td>
<td>9071</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1 1/2</td>
<td>860</td>
<td>9456</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>895</td>
<td>9841</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>930</td>
<td>10226</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>975</td>
<td>10721</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1020</td>
<td>11215</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1065</td>
<td>11710</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1110</td>
<td>12205</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1160</td>
<td>12755</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1210</td>
<td>13305</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>1</td>
<td>1260</td>
<td>13854</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>7/4</td>
<td>1310</td>
<td>14404</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>7/4</td>
<td>1355</td>
<td>14899</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>7/4</td>
<td>1400</td>
<td>15394</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>7/4</td>
<td>1440</td>
<td>15834</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>10</td>
<td>1496</td>
<td>16328</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>10</td>
<td>1520</td>
<td>16713</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>10</td>
<td>1555</td>
<td>17098</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
<tr>
<td>10</td>
<td>1590</td>
<td>17483</td>
<td>14030</td>
<td>0.92</td>
<td>14805</td>
<td>1.06</td>
<td>15796</td>
<td>1.23</td>
<td>16652</td>
</tr>
</tbody>
</table>

Static Pressure in Inches W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>13918</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>0.250</td>
<td>11708</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>0.375</td>
<td>8513</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>0.500</td>
<td>6248</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>0.750</td>
<td>4162</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>1.000</td>
<td>2456</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>1.250</td>
<td>12787</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
<tr>
<td>1.500</td>
<td>9796</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
<td>0.92</td>
<td>14030</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 48

Max RPM - 1375
Max Motor Frame Size - 254T
Shaft Dia. - 1½"
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 600

Static Pressure in Inches W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>1.250</th>
<th>1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>695</td>
<td>8733</td>
<td>18197</td>
<td>15113</td>
<td>11395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.34</td>
<td>1.36</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>715</td>
<td>8964</td>
<td>18880</td>
<td>15919</td>
<td>12470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.46</td>
<td>1.49</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>745</td>
<td>9361</td>
<td>19898</td>
<td>17097</td>
<td>13934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.64</td>
<td>1.68</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>775</td>
<td>9738</td>
<td>20907</td>
<td>18254</td>
<td>15307</td>
<td>11646</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>1.84</td>
<td>1.89</td>
<td>1.86</td>
<td>1.69</td>
</tr>
<tr>
<td>2</td>
<td>805</td>
<td>10115</td>
<td>21896</td>
<td>19377</td>
<td>16586</td>
<td>13293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.06</td>
<td>2.11</td>
<td>2.10</td>
<td>1.98</td>
</tr>
<tr>
<td>3</td>
<td>840</td>
<td>10555</td>
<td>23037</td>
<td>20686</td>
<td>18049</td>
<td>15131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.33</td>
<td>2.39</td>
<td>2.40</td>
<td>2.31</td>
</tr>
<tr>
<td>3</td>
<td>885</td>
<td>11121</td>
<td>24493</td>
<td>22303</td>
<td>19865</td>
<td>17243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>2.72</td>
<td>2.79</td>
<td>2.82</td>
<td>2.76</td>
</tr>
<tr>
<td>3</td>
<td>920</td>
<td>11561</td>
<td>25618</td>
<td>23557</td>
<td>21233</td>
<td>18749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>3.04</td>
<td>3.12</td>
<td>3.16</td>
<td>3.13</td>
</tr>
<tr>
<td>5</td>
<td>955</td>
<td>12000</td>
<td>26737</td>
<td>24775</td>
<td>22576</td>
<td>20221</td>
<td>14587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>3.40</td>
<td>3.48</td>
<td>3.54</td>
<td>3.52</td>
</tr>
<tr>
<td>5</td>
<td>965</td>
<td>12377</td>
<td>27692</td>
<td>25807</td>
<td>23697</td>
<td>21461</td>
<td>16230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>3.72</td>
<td>3.81</td>
<td>3.87</td>
<td>3.86</td>
</tr>
<tr>
<td>5</td>
<td>1020</td>
<td>12817</td>
<td>28803</td>
<td>27002</td>
<td>24991</td>
<td>22663</td>
<td>18104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>4.12</td>
<td>4.22</td>
<td>4.29</td>
<td>4.31</td>
</tr>
<tr>
<td>5</td>
<td>1050</td>
<td>13194</td>
<td>29751</td>
<td>28019</td>
<td>26088</td>
<td>24039</td>
<td>19637</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>4.49</td>
<td>4.60</td>
<td>4.67</td>
<td>4.71</td>
</tr>
<tr>
<td>5</td>
<td>1090</td>
<td>13897</td>
<td>31012</td>
<td>29385</td>
<td>27535</td>
<td>25586</td>
<td>21388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>5.01</td>
<td>5.13</td>
<td>5.21</td>
<td>5.26</td>
</tr>
<tr>
<td>7/4</td>
<td>1120</td>
<td>14074</td>
<td>31954</td>
<td>30362</td>
<td>28610</td>
<td>26715</td>
<td>22675</td>
<td>17764</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>5.43</td>
<td>5.56</td>
<td>5.64</td>
<td>5.70</td>
</tr>
<tr>
<td>7/4</td>
<td>1150</td>
<td>14451</td>
<td>32894</td>
<td>31344</td>
<td>29684</td>
<td>27832</td>
<td>23944</td>
<td>19422</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>5.87</td>
<td>6.00</td>
<td>6.09</td>
<td>6.16</td>
</tr>
<tr>
<td>7/4</td>
<td>1180</td>
<td>14826</td>
<td>33832</td>
<td>32321</td>
<td>30701</td>
<td>28938</td>
<td>25166</td>
<td>21019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>6.34</td>
<td>6.47</td>
<td>6.57</td>
<td>6.64</td>
</tr>
<tr>
<td>7/4</td>
<td>1215</td>
<td>15268</td>
<td>34924</td>
<td>33457</td>
<td>31903</td>
<td>30217</td>
<td>26838</td>
<td>22880</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>6.91</td>
<td>7.05</td>
<td>7.15</td>
<td>7.23</td>
</tr>
<tr>
<td>7/4</td>
<td>1245</td>
<td>15846</td>
<td>35848</td>
<td>34426</td>
<td>32926</td>
<td>31304</td>
<td>27834</td>
<td>24080</td>
<td>19500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>7.43</td>
<td>7.57</td>
<td>7.66</td>
<td>7.77</td>
</tr>
<tr>
<td>7/4</td>
<td>1280</td>
<td>16084</td>
<td>36924</td>
<td>35563</td>
<td>34114</td>
<td>32552</td>
<td>29208</td>
<td>25616</td>
<td>21408</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>8.06</td>
<td>8.21</td>
<td>8.33</td>
<td>8.42</td>
</tr>
<tr>
<td>7/4</td>
<td>1310</td>
<td>16461</td>
<td>37845</td>
<td>36515</td>
<td>35126</td>
<td>33631</td>
<td>30374</td>
<td>26893</td>
<td>23011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>8.63</td>
<td>8.79</td>
<td>8.92</td>
<td>9.02</td>
</tr>
<tr>
<td>7/4</td>
<td>1345</td>
<td>18001</td>
<td>38918</td>
<td>37634</td>
<td>36301</td>
<td>34845</td>
<td>31717</td>
<td>28364</td>
<td>24724</td>
<td>20320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>9.33</td>
<td>9.49</td>
<td>9.64</td>
<td>9.74</td>
</tr>
<tr>
<td>10</td>
<td>1375</td>
<td>17278</td>
<td>39836</td>
<td>38590</td>
<td>37294</td>
<td>35879</td>
<td>32842</td>
<td>29810</td>
<td>26134</td>
<td>21974</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHP</td>
<td>9.96</td>
<td>10.13</td>
<td>10.28</td>
<td>10.39</td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 54

Max RPM - 1140
Max Motor Frame Size - 256T
Shaft Dia. - 1\(\frac{1}{4}\)"
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 820

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>CFM</th>
<th>BHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>550</td>
<td>7776</td>
<td>24519</td>
<td>1.74</td>
</tr>
<tr>
<td>2</td>
<td>585</td>
<td>8270</td>
<td>26832</td>
<td>2.09</td>
</tr>
<tr>
<td>3</td>
<td>605</td>
<td>8552</td>
<td>27826</td>
<td>2.31</td>
</tr>
<tr>
<td>3</td>
<td>635</td>
<td>8977</td>
<td>29590</td>
<td>2.87</td>
</tr>
<tr>
<td>3</td>
<td>665</td>
<td>9401</td>
<td>31336</td>
<td>3.06</td>
</tr>
<tr>
<td>5</td>
<td>690</td>
<td>9754</td>
<td>32779</td>
<td>3.41</td>
</tr>
<tr>
<td>5</td>
<td>715</td>
<td>10108</td>
<td>34214</td>
<td>3.79</td>
</tr>
<tr>
<td>5</td>
<td>745</td>
<td>10532</td>
<td>35924</td>
<td>4.26</td>
</tr>
<tr>
<td>5</td>
<td>770</td>
<td>10886</td>
<td>37342</td>
<td>4.72</td>
</tr>
<tr>
<td>5</td>
<td>795</td>
<td>11239</td>
<td>38753</td>
<td>5.19</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>825</td>
<td>11663</td>
<td>40488</td>
<td>5.79</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>855</td>
<td>12087</td>
<td>42116</td>
<td>6.44</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>880</td>
<td>12440</td>
<td>43496</td>
<td>7.02</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>910</td>
<td>12864</td>
<td>45140</td>
<td>7.75</td>
</tr>
<tr>
<td>10</td>
<td>935</td>
<td>13218</td>
<td>46506</td>
<td>8.40</td>
</tr>
<tr>
<td>10</td>
<td>965</td>
<td>13642</td>
<td>48141</td>
<td>9.22</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>14137</td>
<td>50043</td>
<td>10.3</td>
</tr>
<tr>
<td>10</td>
<td>1030</td>
<td>14661</td>
<td>51869</td>
<td>11.2</td>
</tr>
<tr>
<td>10</td>
<td>1045</td>
<td>14773</td>
<td>52481</td>
<td>11.7</td>
</tr>
<tr>
<td>15</td>
<td>1076</td>
<td>15197</td>
<td>54102</td>
<td>12.7</td>
</tr>
<tr>
<td>15</td>
<td>1100</td>
<td>15550</td>
<td>55451</td>
<td>13.6</td>
</tr>
<tr>
<td>15</td>
<td>1140</td>
<td>16116</td>
<td>57605</td>
<td>15.1</td>
</tr>
</tbody>
</table>

STATIC PRESSURE IN INCHES W.G.

<table>
<thead>
<tr>
<th>HP</th>
<th>RPM</th>
<th>TS</th>
<th>0.125</th>
<th>0.250</th>
<th>0.375</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>1.250</th>
<th>1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>550</td>
<td>7776</td>
<td>24519</td>
<td>19338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>585</td>
<td>8270</td>
<td>26832</td>
<td>21966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>605</td>
<td>8552</td>
<td>27826</td>
<td>23403</td>
<td>17137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>635</td>
<td>8977</td>
<td>29590</td>
<td>25520</td>
<td>20545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>665</td>
<td>9401</td>
<td>31336</td>
<td>27594</td>
<td>22994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>690</td>
<td>9754</td>
<td>32779</td>
<td>29239</td>
<td>24967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>715</td>
<td>10108</td>
<td>34214</td>
<td>30807</td>
<td>28798</td>
<td>2159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>745</td>
<td>10532</td>
<td>35924</td>
<td>32866</td>
<td>28850</td>
<td>24692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>770</td>
<td>10886</td>
<td>37342</td>
<td>34199</td>
<td>30716</td>
<td>28722</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>795</td>
<td>11239</td>
<td>38753</td>
<td>35718</td>
<td>32458</td>
<td>28701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>825</td>
<td>11663</td>
<td>40488</td>
<td>37525</td>
<td>34516</td>
<td>30897</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>855</td>
<td>12087</td>
<td>42116</td>
<td>39316</td>
<td>36435</td>
<td>33055</td>
<td>24155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>880</td>
<td>12440</td>
<td>43496</td>
<td>40791</td>
<td>37999</td>
<td>34827</td>
<td>27458</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>910</td>
<td>12864</td>
<td>45140</td>
<td>42546</td>
<td>39887</td>
<td>36924</td>
<td>30042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>935</td>
<td>13218</td>
<td>46506</td>
<td>44000</td>
<td>41393</td>
<td>38649</td>
<td>32078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>965</td>
<td>13642</td>
<td>48141</td>
<td>45735</td>
<td>43220</td>
<td>40688</td>
<td>34480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>14137</td>
<td>50043</td>
<td>47747</td>
<td>45333</td>
<td>42870</td>
<td>37084</td>
<td>29585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1030</td>
<td>14661</td>
<td>51869</td>
<td>49462</td>
<td>47130</td>
<td>44739</td>
<td>39256</td>
<td>32074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1045</td>
<td>14773</td>
<td>52481</td>
<td>50317</td>
<td>48024</td>
<td>45687</td>
<td>40330</td>
<td>34215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1076</td>
<td>15197</td>
<td>54102</td>
<td>52020</td>
<td>49796</td>
<td>47512</td>
<td>42468</td>
<td>36665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1100</td>
<td>15550</td>
<td>55451</td>
<td>53435</td>
<td>51261</td>
<td>49038</td>
<td>44212</td>
<td>38677</td>
<td>30676</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1140</td>
<td>16116</td>
<td>57605</td>
<td>55688</td>
<td>53591</td>
<td>51481</td>
<td>46983</td>
<td>41748</td>
<td>35901</td>
<td></td>
</tr>
</tbody>
</table>

Performance shown is for Model TABI with inlet and outlet ducts.
BHP does not include drive losses.
Performance Data

TABI 60

Max RPM - 970
Max Motor Frame Size - 284T
Shaft Dia. - 2"
Fan Tube Gauge - 10
Approx. Weight (lbs.) - 1030

| HP | RPM | TS | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP | CFM | BHP |
|-----|------|------|-----|------|-----|------|-----|------|-----|-----|-----|------|-----|-----|------|------|-----|------|-----|-----|------|------|-----|------|-----|-----|------|------|-----|------|-----|-----|------|------|-----|------|-----|-----|------|------|-----|------|-----|-----|------|------|

Static Pressure in Inches W.G.

Performance shown is for Model TABI with inlet and outlet ducts.

BHP does not include drive losses.
TYPICAL SPECIFICATIONS — DIRECT DRIVE
Supply, exhaust or return air fans shall be of the direct drive tube axial type.
Propeller construction shall be cast aluminum airfoil. A standard square key or tapered bushing shall lock the propeller to the motor shaft. Propellers shall be statically and dynamically balanced.
The housing shall be constructed of continuously welded heavy gauge steel to assure no air leakage.
The motor support shall be constructed of structural steel members to prevent vibration and rigidly support the motor and propeller. All structural steel parts shall be coated with Perma-Tector™ for a long lasting finish.
Fan performance shall be based on tests conducted in accordance with AMCA Standard 210 test code for air moving devices, and fans shall be licensed to bear the AMCA Certified Ratings Seal for air performance.
Tube Axial fans shall be Model TADI as manufactured by IAP Inc. of Phillips, Wisconsin, and shall be supplied as shown on the plans and in the fan schedule.

TYPICAL SPECIFICATIONS — BELT DRIVE
Supply, exhaust or return air fans shall be of the belt driven tube axial type.
Propeller construction shall be cast aluminum airfoil. A standard square key or tapered bushing shall lock the propeller to the motor shaft. Propellers shall be statically and dynamically balanced.
The housing shall be constructed of continuously welded, heavy gauge steel to assure no air leakage.
The bearing support shall be constructed of structural steel members to prevent vibration and rigidly support the shaft and bearings. All structural steel parts shall be coated with Perma-Tector™ for a long lasting finish.
Turned, precision ground and polished steel shafts shall be sized so the first critical speed is at least 25% over the maximum operating speed. Close tolerances shall be maintained where the shaft makes contact with the bearing. Bearings shall be grease lubricated, heavy duty ball type in pillow block mounts. Bearings shall be selected for a minimum (L50) life in excess of 200,000 hours at maximum operating speed.
Fan performance shall be based on tests conducted in accordance with AMCA Standard 210 test code for air moving devices, and fan shall be licensed to bear the AMCA certified ratings seal for air performance.
Tube Axial fans shall be Model TABI as manufactured by IAP Inc. of Phillips, Wisconsin, and shall be supplied as shown on the plans and in the fan schedule.

WARRANTY
IAP Inc. warrants this equipment to be free from defects in material and workmanship for a period of one year from the purchase date.
Any units or parts which prove defective during the warranty period will be replaced at our option when returned to our factory, transportation prepaid.
Motors are warranted by the motor manufacturer for a period of one year. Should motors furnished by IAP Inc. prove defective during this period, they should be returned to the nearest authorized motor service station. IAP Inc. will not be responsible for any installation or removal costs.

IAP Inc.
P.O. BOX 56
PHILLIPS, WI 54555
715/339-3924

Due to IAP Inc.'s policy of continuous product improvement, dimensions are subject to change. For complete dimensional information refer to the applicable IAP submittal drawing.

TAX-TD-10-0
June 1993