STANDARD CONSTRUCTION

FRAME: 5½” x ¾” x 16 GA. 304 stainless steel hat channel. Flat 16 GA. head and sill are used for sizes less than or equal to 13” high.

BLADES: 16 GA. 304 stainless steel, single thickness, parallel action.

AXLES: Plated solid steel stub.

BEARINGS: 304 stainless steel.

LINKAGE: 304 stainless steel angle and crank plates with stainless steel pivots, in-jamb type.

STOPS: 18 GA. 304 stainless steel angles at head and sill.

BLADE SEALS: Silicone.

JAMB SEALS: Stainless steel.

SLEEVE: Minimum 20 GA. stainless steel by 18” long (sizes greater than 84" wide or 94" high require minimum 18 GA.).

CAULKING: Electric or pneumatic. Factory-installed for power-open/spring-close (fail close) operation. External left-hand mounted as viewed from jackshaft side of damper.

FINISH: Mill on stainless steel.

OPTIONS

Type 316 Stainless Steel (where available)

- External right hand actuator mounting location
- Integral Dual Position Indication (IDPI) switches
- Model SM-501 Flow-rated smoke detector (10” minimum damper height)
- Tab-Lock retaining angles
- Copper tubing (for pneumatic actuators)
- Sleeves of various depths and gauge thicknesses
- Round or oval transitions
- Short-width (less than 8”) and/or short-height (less than 8”) transitions
- Power-close/spring-open actuation (restrictions apply)

NOTES

1. Damper frames are provided approximately ¼” undersized. The addition of a sleeve will increase the size of the assembly.
2. Damper with smoke detector must have a minimum sleeve of 19” (10½” on the actuator side and 3” on the non-actuator side).
3. On dampers with all internal actuators, minimum height for factory mounted smoke detectors to be 14”.

DAMPER SIZES

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Horizontal & Vertical</th>
<th>Horizontal & Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panels</td>
<td>Min. Panel Size</td>
<td>Max Panel 250°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular</td>
<td>4"W x 4"H (8"W x 8"H frame)</td>
<td>36"W x 36"H</td>
</tr>
<tr>
<td>Round</td>
<td>4" dia. (8"W x 8"H frame)</td>
<td>34" dia. N/A</td>
</tr>
<tr>
<td>Oval</td>
<td>4"W x 4"H (8"W x 8"H frame)</td>
<td>34"W x 34"H</td>
</tr>
</tbody>
</table>

* Dampers smaller than minimum frame size require a transitions. Reference SD-TRFS.

UNDERWRITERS LABORATORIES INC.®

CLASSIFIED DYNAMIC SMOKE DAMPER

LEAKAGE RESISTANCE CLASS II

FILE # R16591

This smoke damper meets the construction and performance requirements of:

- Underwriters Laboratories Inc. Standard 555S
- National Fire Protection Association Standards 80 and 90A
- ICC’s International Building Code
- New York City MEA Listing #112-99-M
- California State Fire Marshal Listing #3230-1328:106
- Underwriters Laboratories Inc. Approved for dual direction airflow and dynamic conditions.
- Underwriters Laboratories Inc. Classified for use in smoke control systems for Leakage Class II and 250°F.
- Actuators must be controlled by a smoke detection system.

The 3” dimension will increase if sleeve length is increased.
Model KH2(SS)

Smoke Damper • Single Thickness Blade • Leakage Class II • 250°F • Stainless Steel

OPERATIONAL RATING

Maximum Differential Pressure: 4 in. w.g.

Maximum Face Velocity: 2000 fpm (3000 fpm for selected size/actuator combinations)

LEAKAGE RATING

UL Class I

- 10 cfm per sq.ft. maximum @ 1 in. w.g.
- 20 cfm per sq.ft. maximum @ 4 in. w.g.

SOUND RATING

The Noise Criterion data below was tested in accordance with ASTM E477.99 in the center octave band.

<table>
<thead>
<tr>
<th>Damper Size</th>
<th>Noise Criterion (NC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 2000 3000 4000</td>
</tr>
<tr>
<td>12"W x 12"H</td>
<td>31 53 64 71</td>
</tr>
<tr>
<td>24"W x 24"H</td>
<td>33 54 65 n/a</td>
</tr>
</tbody>
</table>

PRESSURE DROP RATING

The pressure drop data shown below is based on laboratory conditions. The test setup does not take into account elbows or other duct fittings that are part of every actual duct system. The configuration of the actual duct system immediately upstream and downstream of the damper often contributes more pressure loss than the damper itself.

![Graph showing pressure drop vs. face velocity for different sizes of damper](image)

Tested in accordance with AMCA Standard 500D, Figure 5.3

Intake air converted to standard air density.