Model: DC-638

Extruded Aluminum Louver - Mounting Option #1 Shown

Application:

DC-638 is an extruded louver designed specifically to meet the following Miami-Dade County test requirements and protocols:

- TAS 201-94 (Large Missile Impact Test)
- TAS 202-94 (Uniform Static Air Pressure Test)
- TAS 203-94 (Cycle Wind Loading Test)

Based on single section testing of an 84"w x 120"h sample with a maximum design load pressure of 160-psf.

Standard Specifications:

Frame: Heavy gauge 6" x .125" thick 6063T5 extruded aluminum.

Blade: Drainable design .125" thick 6063T5 extruded aluminum, mechanically fastened and welded to jambs on backside of blade, set on 38 degree angles. Blades are 4.75" apart. (Bottom blade opening varies).

Birdscreen: Standard .0516" x 3/4" flattened expanded aluminum.

Anchor Clips: 2" x 2" x 3/16" x 2" long.

Minimum size: 12"w x 12"h

Maximum Size: 84"w x 120"h Single Section. Unlimited width x 120"h sectional.

Options:

- Insect Screen
- Approved Wedge Anchors
- Mill Finish (standard)
- Enamel Finish
- Kynar Finish
- Anodized Finish
- Powder Coating (Other Finishes Available)

Features:

- Louver may be used in approved masonry or wood structure walls.
- 57% Free Area
- Published performance ratings based on testing in accordance with AMCA Standard 500-L

Note: All DC-638 louvers are built 1/2" under size both directions unless ordered actual size.
Model: DC-638
Extruded Aluminum Louver - Mounting Option #2 Shown

Application:

DC-638 is an extruded louver designed specifically to meet the following Miami-Dade County test requirements and protocols:

- **TAS 201-94** (Large Missile Impact Test)
- **TAS 202-94** (Uniform Static Air Pressure Test)
- **TAS 203-94** (Cycle Wind Loading Test)

Based on single section testing of an 84”w x 120”h sample with a maximum design load pressure of 160-psf.

Standard Specifications:

Frame: Heavy gauge 6” x .125” thick 6063-T5 extruded aluminum. **Flanged Bottom Sill.**

Blade: Drainable design .125” thick 6063-T5 extruded aluminum, mechanically fastened and welded to jambs on backside of blade, set on 38 degree angles. Blades are spaced at 4.75” apart. (Bottom blade opening varies).

Birdscreen: Standard .0516” x 3/4” flattened expanded aluminum.

Anchor Clips: 2” x 2” x 3/16” x 2” long.

Minimum size: 12’w x 12’h

Maximum Size: 84’w x 120’h Single Section. Unlimited width x 120’h sectional.

Options:
- Insect Screen
- Approved Wedge Anchors
- Mill Finish (standard)
- Enamel Finish
- Kynar Finish
- Anodized Finish
- Powder Coating (Other Finishes Available)

Features:
- Louver may be used in approved masonry or wood structure walls.
- 57% Free Area
- Published performance ratings based on testing in accordance with AMCA Standard 500-L

Note: All DC-638 louvers are built 1/2” under size both directions unless ordered actual size.
Model: DC-638

Extruded Aluminum Louver - Mounting Option #3 Shown

Application:

DC-638 is an extruded louver designed specifically to meet the following Miami-Dade County test requirements and protocols:
- TAS 201-94 (Large Missile Impact Test)
- TAS 202-94 (Uniform Static Air Pressure Test)
- TAS 203-94 (Cycle Wind Loading Test)

Based on single section testing of an 84"w x 120"h sample with a maximum design load pressure of 160-psf.

Standard Specifications:

Frame: Heavy gauge 6" x .125" thick 6063T5 extruded aluminum. Flanged Bottom Sill.
Blade: Drainable design .125" thick 6063T5 extruded aluminum, mechanically fastened and welded to jambs on backside of blade, set on 38 degree angles. Blades are spaced at 4.75" (bottom blade opening varies).

Birdscreen: Standard .0516" x 3/4" flattened expanded aluminum.

Aluminum Angle: 2" x 4" x 3/16"

10 ga. Aluminum Sleeve: 12" long min. - 24" long max.

Minimum size:
12'w x 12'h

Maximum Size:
84'w x 120"h Single Section. Unlimited width x 120"h sectional.

Options:
- Insect Screen
- Approved Wedge Anchors
- Mill Finish (standard)
- Enamel Finish
- Kynar Finish
- Anodized Finish
- Powder Coating (Other Finishes Available)

Features:
- Louver may be used in approved masonry or wood structure walls.
- 57% Free Area
- Published performance ratings based on testing in accordance with AMCA Standard 500-L

Note: All DC-638 louvers are built 1/2" under size both directions unless ordered actual size.
Model: DC-638
Extruded Aluminum Louver - Mounting Option #4 Shown

Application:

DC-638 is an extruded louver designed specifically to meet the following Miami-Dade County test requirements and protocols:
- TAS 201-94 (Large Missile Impact Test)
- TAS 202-94 (Uniform Static Air Pressure Test)
- TAS 203-94 (Cycle Wind Loading Test)

Based on single section testing of an 84”w x 120”h sample with a maximum design load pressure of 160-psf.

Standard Specifications:

Frame: Heavy gauge 6” x .125” thick 6063T5 extruded aluminum. Flanged Bottom Sill.
Blade: Drainable design .125” thick 6063T5 extruded aluminum, mechanically fastened and welded to jambs on backside of blade, set on 38 degree angles. Blades are spaced at 4.75” (Bottom blade opening varies).
Birdscreen: Standard .0516” x 3/4” flattened expanded aluminum.
Aluminum Angle: 2” x 2” x 3/16”
10 ga. Aluminum Sleeve with Flange: 12” long min. - 24” long max.

Minimum size: 12”w X 12”h

Maximum Size: 84”w x 120”h Single Section, Unlimited width x 120”h sectional.

Options:
- Insect Screen
- Approved Wedge Anchors
- Mill Finish (standard)
- Enamel Finish
- Kynar Finish
- Anodized Finish
- Powder Coating (Other Finishes Available)

Features:
- Louver may be used in approved masonry or wood structure walls.
- 57% Free Area
- Published performance ratings based on testing in accordance with AMCA Standard 500-L

Note: All DC-638 louvers are built 1/2” under size both directions unless ordered actual size.
Aire Technologies, Inc. certifies that the model DC-638 shown herein is licensed to bear the AMCA Seal. The ratings shown are based on test and procedures performed in accordance with AMCA Publication 511 and comply with the requirements of the AMCA Certified Ratings Program. The AMCA Seal applies to Water Penetration and Air Performance ratings only.

DC-638 Specifications

Louvers meeting the following specifications shall be furnished and installed where shown on the plans and or schedules. Louvers shall be stationary type with horizontal drainable blades in a 6 in. deep frame. Louvers shall conform to South Florida Building Code, (Miami Dade County), Protocols: PA 201-94, PA 202-94, and PA 203-94 based on a maximum design load of 160 lbs/sq ft. (Corresponds with a 250 mph wind), when mounted within a concrete, masonry block or structural steel framed opening. Louver blade and frame materials to be 0.125 in. thick 6063T5 extruded aluminum. Louver blades shall be positioned at 38° angles on approximately 4.75 in. centers. Louver blades shall be both mechanically fastened with Tek Screws and welded to the frame. All welding to louver blades shall be on backside to maintain aesthetic appearance. Louver sections for openings larger than 84 in. wide shall have factory supplied mullions contained within the jamb for smooth uninterrupted appearance. Louver performance data shall be licensed under the AMCA Certified Rating Program, and shall bear the AMCA Certified Ratings Seal. This licensed performance data shall include airflow pressure loss and water penetration, and shall demonstrate performance equal to or better than the Leader model specified.
Model DC-638 Extruded Aluminum Louver

CFM and Free Area Selection Chart

<table>
<thead>
<tr>
<th>Louver Width (in.)</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
<th>54</th>
<th>60</th>
<th>66</th>
<th>72</th>
<th>78</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>306</td>
<td>502</td>
<td>697</td>
<td>893</td>
<td>1088</td>
<td>1292</td>
<td>1488</td>
<td>1683</td>
<td>1879</td>
<td>2074</td>
<td>2270</td>
<td>2474</td>
<td>2699</td>
</tr>
<tr>
<td>0.64</td>
<td>106</td>
<td>148</td>
<td>189</td>
<td>231</td>
<td>273</td>
<td>314</td>
<td>349</td>
<td>398</td>
<td>439</td>
<td>481</td>
<td>523</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>0.84</td>
<td>1.38</td>
<td>1.92</td>
<td>2.46</td>
<td>3.01</td>
<td>3.55</td>
<td>4.09</td>
<td>4.63</td>
<td>5.18</td>
<td>5.72</td>
<td>6.26</td>
<td>6.80</td>
<td>7.35</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>1.85</td>
<td>2.58</td>
<td>3.30</td>
<td>4.03</td>
<td>4.76</td>
<td>5.48</td>
<td>6.21</td>
<td>6.94</td>
<td>7.66</td>
<td>8.39</td>
<td>9.12</td>
<td>9.85</td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>2.32</td>
<td>3.23</td>
<td>4.14</td>
<td>5.05</td>
<td>5.97</td>
<td>6.88</td>
<td>7.79</td>
<td>8.70</td>
<td>9.61</td>
<td>10.53</td>
<td>11.44</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>1.86</td>
<td>3.07</td>
<td>4.28</td>
<td>5.49</td>
<td>6.70</td>
<td>7.90</td>
<td>9.11</td>
<td>10.32</td>
<td>11.53</td>
<td>12.74</td>
<td>13.95</td>
<td>15.15</td>
<td>16.36</td>
<td></td>
</tr>
<tr>
<td>2.74</td>
<td>4.51</td>
<td>6.28</td>
<td>8.06</td>
<td>9.83</td>
<td>11.61</td>
<td>13.38</td>
<td>15.15</td>
<td>16.93</td>
<td>18.70</td>
<td>20.48</td>
<td>22.25</td>
<td>24.03</td>
<td></td>
</tr>
<tr>
<td>3.84</td>
<td>5.77</td>
<td>8.04</td>
<td>10.31</td>
<td>12.57</td>
<td>14.84</td>
<td>17.11</td>
<td>19.38</td>
<td>21.65</td>
<td>23.92</td>
<td>26.19</td>
<td>28.46</td>
<td>30.73</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>6.23</td>
<td>8.69</td>
<td>11.14</td>
<td>13.59</td>
<td>16.05</td>
<td>18.50</td>
<td>20.95</td>
<td>23.40</td>
<td>25.86</td>
<td>28.31</td>
<td>30.76</td>
<td>33.22</td>
<td></td>
</tr>
<tr>
<td>5.29</td>
<td>6.89</td>
<td>9.46</td>
<td>11.55</td>
<td>13.64</td>
<td>15.72</td>
<td>17.81</td>
<td>19.89</td>
<td>21.98</td>
<td>24.06</td>
<td>26.15</td>
<td>28.23</td>
<td>30.73</td>
<td></td>
</tr>
<tr>
<td>6.06</td>
<td>7.38</td>
<td>9.79</td>
<td>12.55</td>
<td>15.32</td>
<td>18.08</td>
<td>20.84</td>
<td>23.61</td>
<td>26.37</td>
<td>29.13</td>
<td>31.90</td>
<td>34.66</td>
<td>37.43</td>
<td></td>
</tr>
<tr>
<td>6.98</td>
<td>8.22</td>
<td>10.68</td>
<td>13.02</td>
<td>15.68</td>
<td>17.74</td>
<td>20.69</td>
<td>23.24</td>
<td>25.76</td>
<td>28.37</td>
<td>31.90</td>
<td>34.56</td>
<td>37.24</td>
<td></td>
</tr>
<tr>
<td>8.09</td>
<td>9.46</td>
<td>11.55</td>
<td>13.64</td>
<td>15.72</td>
<td>17.81</td>
<td>19.89</td>
<td>21.98</td>
<td>24.06</td>
<td>26.15</td>
<td>28.23</td>
<td>30.73</td>
<td>33.22</td>
<td></td>
</tr>
<tr>
<td>10.96</td>
<td>11.50</td>
<td>13.97</td>
<td>15.70</td>
<td>17.65</td>
<td>19.51</td>
<td>21.36</td>
<td>23.19</td>
<td>25.04</td>
<td>27.38</td>
<td>30.34</td>
<td>33.22</td>
<td>36.16</td>
<td></td>
</tr>
<tr>
<td>12.90</td>
<td>13.50</td>
<td>16.05</td>
<td>17.56</td>
<td>19.38</td>
<td>21.10</td>
<td>22.71</td>
<td>24.30</td>
<td>26.03</td>
<td>28.38</td>
<td>30.73</td>
<td>33.22</td>
<td>36.16</td>
<td></td>
</tr>
<tr>
<td>15.40</td>
<td>15.90</td>
<td>18.57</td>
<td>20.14</td>
<td>21.87</td>
<td>23.48</td>
<td>25.04</td>
<td>26.53</td>
<td>28.09</td>
<td>30.54</td>
<td>32.99</td>
<td>35.54</td>
<td>38.18</td>
<td></td>
</tr>
<tr>
<td>19.60</td>
<td>19.40</td>
<td>22.11</td>
<td>23.68</td>
<td>25.34</td>
<td>26.89</td>
<td>28.44</td>
<td>30.00</td>
<td>31.55</td>
<td>34.00</td>
<td>36.45</td>
<td>38.90</td>
<td>41.45</td>
<td></td>
</tr>
<tr>
<td>25.40</td>
<td>24.90</td>
<td>27.66</td>
<td>29.23</td>
<td>30.79</td>
<td>32.34</td>
<td>33.89</td>
<td>35.44</td>
<td>36.99</td>
<td>38.54</td>
<td>40.99</td>
<td>43.43</td>
<td>45.93</td>
<td></td>
</tr>
<tr>
<td>33.60</td>
<td>31.90</td>
<td>33.47</td>
<td>35.03</td>
<td>36.59</td>
<td>38.14</td>
<td>39.69</td>
<td>41.24</td>
<td>42.79</td>
<td>44.34</td>
<td>45.89</td>
<td>47.44</td>
<td>49.08</td>
<td></td>
</tr>
</tbody>
</table>

This Table has been developed to assist in application and selection of these louvers. Two numbers are shown for each louver size. The upper number represents the sq. ft. of louver free area for each louver size. The lower number shows CFM of air flow permitted when selecting an intake louver at the point of zero water penetration. Pressure drop when using this selection Guide for an intake louver will be .055 in. W.G. Louvers may be selected at other operating points on the Performance Curves if desired using the formula: CFM = Free Area (sq. ft.) X Free Area Velocity (FPM)