Application

Model OFSD-212 is approved for use in walls, partitions, and floors with fire resistance ratings less than 3 hours. OFSD-212 is an ‘out of the wall’ combination fire smoke damper with 3V style blades. Removal of wall grille allows access to actuator and other components. This model’s operational ratings of 2,000 fpm (10.2 m/s) and pressures to 6 in. wg (1.5 kPa). Model OFSD-212 shall be installed vertically (with blades running horizontal) or horizontally and is rated for airflow and leakage in either direction.

Ratings

UL555 Fire Resistance Rating
Fire Rating: 1½ hours in walls
Dynamic Closure Rating: Actual limits are size dependent
Max. Velocity: 2,000 fpm (10.2 m/s)
Max. Pressure: 6 in. wg (1.5 kPa) - differential pressure

UL555S Leakage Rating
Leakage Class: II
Operational Rating: Actual limits are size dependent
Max. Velocity: 2,000 fpm (10.2 m/s)
Max. Pressure: 6 in. wg (1.5 kPa)
Max. Temperature: 350°F (177°C) - depending upon the actuator

Construction

<table>
<thead>
<tr>
<th>Construction</th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Material</td>
<td>Galvanized steel</td>
<td>-</td>
</tr>
<tr>
<td>Frame Material Thickness</td>
<td>16 ga. (1.5mm)</td>
<td>-</td>
</tr>
<tr>
<td>Frame Type</td>
<td>5 in. x 1in. (127mm x 25mm) hat channel</td>
<td>-</td>
</tr>
<tr>
<td>Blade Material</td>
<td>Galvanized steel</td>
<td>-</td>
</tr>
<tr>
<td>Blade Material Thickness</td>
<td>16 ga. (1.5mm)</td>
<td>-</td>
</tr>
<tr>
<td>Blade Type</td>
<td>3V</td>
<td>-</td>
</tr>
<tr>
<td>Linkage</td>
<td>Plated steel out of air-stream, concealed in jamb</td>
<td>-</td>
</tr>
<tr>
<td>Axle Bearings</td>
<td>316SS</td>
<td>-</td>
</tr>
<tr>
<td>Axle Material</td>
<td>Plated steel</td>
<td>-</td>
</tr>
<tr>
<td>Blade Seals</td>
<td>Silicone</td>
<td>-</td>
</tr>
<tr>
<td>Jamb Seals</td>
<td>Stainless Steel</td>
<td>-</td>
</tr>
<tr>
<td>Closure Device</td>
<td>RRL</td>
<td>-</td>
</tr>
<tr>
<td>RRL/OCI, TOR, Fusible Link</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Closure Temperature</td>
<td>165°F (74°C)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>212°F (100°C), 250°F (121°C), 286°F (141°C), 350°F (177°C)</td>
<td>-</td>
</tr>
</tbody>
</table>

Model OFSD-212 meets the requirements for fire dampers, smoke dampers and combination fire smoke dampers established by:
National Fire Protection Association
NFPA Standards 80, 90A, 92, 101 & 105
IBC International Building Codes
CSFM California State Fire Marshal
Fire Damper Listing (#3225-0981:103)
Leakage (Smoke) Damper Listing (#3230-0981:104)

Pressure Drop Data

This pressure drop testing was conducted in accordance with AMCA Standard 500-D using the three configurations shown. All data has been corrected to represent standard air at a density of 0.075 lb/ft3 (1.201 kg/m3).

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

AMCA Test Figures

Figure 5.3 Illustrates a fully ducted damper. This configuration has the lowest pressure drop of the three test configurations because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Figure 5.2 Illustrates a ducted damper exhausting air into an open area. This configuration has a lower pressure drop than Figure 5.5 because entrance losses are minimized by a straight duct run upstream of the damper.

Figure 5.5 Illustrates a plenum mounted damper. This configuration has the highest pressure drop because of extremely high entrance and exit losses due to the sudden changes of area in the system.

Features:
- Frames are constructed with reinforced corners. Low profile head and sill are used on sizes less than 17 in. high (432mm).
- Blades are reinforced with 3 longitudinal structurally designed vee’s.

Options available on OFSD-212:
- Actuators: 120V, 24V, 230V
- Test Switches
 - Greenheck test switches (GTS-1, -2, -3, -4)
 - Momentary test switches
 - Toggle switches
- POC retaining angles
- Sealed transitions and sleeves
- Smoke detectors
- Transitions: R, C, O

Options & Pressure Drop Data

OFSD-212

Features:
- Frames are constructed with reinforced corners. Low profile head and sill are used on sizes less than 17 in. high (432mm).
- Blades are reinforced with 3 longitudinal structurally designed vee’s.

Options available on OFSD-212:
- Actuators: 120V, 24V, 230V
- Test Switches
 - Greenheck test switches (GTS-1, -2, -3, -4)
 - Momentary test switches
 - Toggle switches
- POC retaining angles
- Sealed transitions and sleeves
- Smoke detectors
- Transitions: R, C, O

Pressure Drop Data

This pressure drop testing was conducted in accordance with AMCA Standard 500-D using the three configurations shown. All data has been corrected to represent standard air at a density of 0.075 lb/ft3 (1.201 kg/m3).

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

AMCA Test Figures

Figure 5.3 Illustrates a fully ducted damper. This configuration has the lowest pressure drop of the three test configurations because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Figure 5.2 Illustrates a ducted damper exhausting air into an open area. This configuration has a lower pressure drop than Figure 5.5 because entrance losses are minimized by a straight duct run upstream of the damper.

Figure 5.5 Illustrates a plenum mounted damper. This configuration has the highest pressure drop because of extremely high entrance and exit losses due to the sudden changes of area in the system.
Greenheck Fan Corporation certifies that the model OFSD-212 shown herein is licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 511 and comply with the requirements of the AMCA Certified Ratings Programs. The AMCA Certified Ratings Seal applies to air performance ratings only.
Application Data

OFSD-212

Actuator Space Envelopes

The drawing below and corresponding table show the minimum dimensions required for internal actuator mounting on OFSD-212. The standard mounting locations provide enough space for the mounting of actuators and controls plus allowing space for a grille and duct connection.

<table>
<thead>
<tr>
<th>Actuator Type/Model</th>
<th>‘X’ Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSLF24, 120, 230 Belimo</td>
<td>7 1⁄2 in (191mm)</td>
</tr>
<tr>
<td>FSNF24, 120, 230 Belimo</td>
<td>7 3⁄8 in. (187mm)</td>
</tr>
<tr>
<td>FSTF24, 120, 230 Belimo</td>
<td>7 1⁄2 in (181mm)</td>
</tr>
<tr>
<td>MSXX09 Series Honeywell</td>
<td>7 1⁄2 in (191mm)</td>
</tr>
<tr>
<td>MSXX04 Series Honeywell</td>
<td>7 1⁄2 in (191mm)</td>
</tr>
<tr>
<td>MSXX20 Series Honeywell</td>
<td>7 1⁄2 in (191mm)</td>
</tr>
<tr>
<td>GND 121.1, 221.1, 321.1</td>
<td>7 1⁄2 in (187mm)</td>
</tr>
</tbody>
</table>

Sleeve Information

Sleeve length is dependent on actuator, grille depth, OBD depth, and damper height.

‘Sleeve Gauge’ = 16 ga. or 20 ga. (1.5mm or 1mm)

Wall Opening Sizing

To accommodate for sleeve and thermal blanket thickness, the wall opening must be oversized by 3⁄8 in. (9.5mm) as shown. For example, if the nominal damper size required is 18 in. x 14 in. (457mm x 356mm), the wall opening size needs to be 18 3⁄8 in. x 14 3⁄8 in. (467mm x 365mm). The damper itself is undersized 3⁄8 in. (6mm) on each dimension for an actual damper size of 17 3⁄8 in. x 13 3⁄8 in. (451mm x 349mm). This is also the inside dimensions of the sleeve (for grille considerations).

Specifications

Combination fire smoke dampers meeting the following specifications shall be furnished and installed where shown on plans and/or as described in schedules. Dampers shall meet requirements of NFPA 80, 90A, 92, 101, and 105 and further shall be tested, rated and labeled in accordance with the latest edition of UL Standards 555 and 555S. Dampers shall have a UL555 fire rating of 1 1⁄2 hours and be of low leakage design qualified to UL555S Leakage Class II.

Each damper/actuator combination shall have UL555S elevated temperature rating of 250°F (121°C) minimum and shall be operational and dynamic rated to operate at maximum design air flow at its installed location. Each damper shall be supplied with an appropriate actuator installed by the damper manufacturer at the time of damper fabrication. Damper actuators shall be (specifier select one of the following) electric type of 120 (24 or 230) volt operation.

Damper blades shall be 16 ga. (1.5mm) galvanized steel 3V type with three longitudinal grooves for reinforcement. Damper frame shall be galvanized steel formed into a structural hat channel shape with reinforced corners. Bearings shall be 316SS type rotating in extruded holes in the damper frame. Blade edge seals shall be silicone rubber designed to inflate and provide a tighter seal against leakage as pressure on either side of the damper increases. Jamb seals shall be stainless steel compression type. Blades shall be symmetrical relative to their axle pivot point, presenting identical resistance to airflow in either direction or pressure on either side of the damper. Each damper shall be supplied with a factory mounted sleeve; sleeve shall be wrapped with UL approved thermal barrier material.

The Damper Manufacturer’s submittal data shall certify all air performance pressure drop data is licensed in accordance with the AMCA Certified Ratings Program for test figures 5.2, 5.3, and 5.5. Damper air performance shall be developed in accordance with the latest edition of AMCA Standard 500-D. Dampers shall be labeled with the AMCA Air Performance Seal.

Damper must be rated for mounting vertically (with blades running horizontal) or horizontally and be UL 555S rated for leakage and airflow in either direction through the damper. Each damper shall be supplied with a 165°F (74°C) RRL.

The basis of design is Greenheck Model OFSD-212.